Everyday Mathematics Student Math Journal 1

The University of Chicago School Mathematics Project

UCSMP Elementary Materials Component
Max Bell, Director

Authors
Max Bell
Jean Bell
John Bretzlauf*
Amy Dillard*
Robert Hartfield
Andy Isaacs*
James McBride, Director
Kathleen Pitvorec*
Peter Saecker

Technical Art
Diana Barrie*
*Second Edition only

Photo Credits
Phil Martin/Photography, Jack Demuth/Photography, Cover Credits: Sand, starfish, orange wedges, crystal/Bill Burlingham Photography, Photo Collage: Herman Adler Design Group
www.sra4kids.com

Mc
Hiw
HRA

Copyright © 2004 by SRA/McGraw-Hill.
All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher, unless otherwise indicated.

Send all inquiries to:
SRA/McGraw-Hill
P.O. Box 812960

Chicago, IL 60681
Printed in the United States of America.
ISBN 0-07-584483-4
123456789 DBH 070605040302

Contents

Unit 1: Routines, Review, and Assessments

A Numbers Hunt 1
Number-Grid Puzzles 2
Looking Up Information 3
Using Mathematical Tools 4
Math Boxes 1.5 5
Displaying Data 6
Name-Collection Boxes 8
Math Boxes 1.6 9
Finding Differences 10
Skip Counting on the Number Grid 11
Math Boxes 1.7 12
Using a Calculator 13
Math Boxes 1.8 14
Using Coins 15
Math Boxes 1.9
A Shopping Trip
Coin Collections17Math Boxes 1.1018
Frames and Arrows 2119
Patterns20
Tic-Tac-Toe Addition 23
Math Boxes 1.11 24
Math Boxes 1.12
Finding Elapsed Times25
Math Boxes 1.132627

Unit 2: Adding and Subtracting Whole Numbers

Math Boxes 2.1 28
Fact Families and Number Families 29
Name-Collection Boxes 30
Using Basic Facts to Solve Fact Extensions 31
Math Boxes 2.2 32
Math Boxes 2.3 33
"What's My Rule?" 34
Fact Families and Number Families 35
Number Stories: Animal Clutches 36
"What’s My Rule?" 38
Math Boxes 2.4 39
Number Stories: Change-to-More and Change-to-Less 40
Parts-and-Total Number Stories 42
Math Boxes 2.5 43
Temperature Differences 44
Math Boxes 2.6 45
The Partial-Sums Addition Method 46
Change-to-More and Change-to-Less Number Stories 48
Math Boxes 2.7 49
The Trade-First Subtraction Method 50
Addition Strategies 52
Math Boxes 2.8 53
Number Stories with Three or More Addends 54
Subtraction Strategies 56
Math Boxes 2.9 57
Math Boxes 2.10 58

Unit 3: Linear Measures and Area

Estimating and Measuring Lengths 59
Addition and Subtraction Practice 60
Math Boxes 3.1 61
Measuring Line Segments 62
Math Boxes 3.2 63
Body Measures 64
Estimating Lengths 65
Math Boxes 3.3 66
Perimeters of Polygons 67
Measures Hunt 68
Math Boxes 3.4 69
Math Boxes 3.5 70
Geoboard Perimeters 71
Tiling with Pattern Blocks 72
Straw Triangles 74
Areas of Rectangles 75
Math Boxes 3.6 76
More Areas of Rectangles 77
Math Boxes 3.7 78
Diameters and Circumferences 79
Math Boxes 3.8 80
Units of Linear Measure 81
Math Boxes 3.9 82

Unit 4: Multiplication and Division

Solving Multiplication Number Stories 83

Writing Multiplication Number Stories $\mathbf{8 4}$
Measuring Line Segments
85
Math Boxes $4.18 \mathbf{8 6}$
More Multiplication Number Stories 87
Perimeter 88
Math Boxes $4.2 \quad \mathbf{8 9}$
Division Practice 90
Math Boxes 4.3 91
Solving Multiplication and Division Number Stories 92
Math Boxes 4.4
Math Boxes 4.5 94
Math Boxes $4.6 \mathbf{9 5}$
Math Boxes 4.7 96
How Many Dots? 97
Setting Up Chairs 98
Math Boxes 4.8 99
Estimating Distances $\mathbf{1 0 0}$
A Pretend Trip $\mathbf{1 0 1}$
Math Boxes 4.9102
Math Boxes 4.10103

Unit 5: Place Value in Whole Numbers and Decimals

Place-Value Review
Math Boxes 5.1
Math Boxes 5.2
Math Boxes 5.3
Working with Populations
Math Boxes 5.4
How Old Am I?
Math Boxes 5.5
Finding the Value of Base-10 Blocks
Squares, Rectangles, and Triangles
Pattern-Block Perimeters
Math Boxes 5.6
Place Value in Decimals
Math Boxes 5.7
Exploring Decimals
Math Boxes 5.8
Decimals for Metric Measurements
Math Boxes 5.9
How Wet? How Dry?
Math Boxes 5.10
More Decimals
Math Boxes 5.11
Math Boxes 5.12
Math Boxes 5.13

Unit 6: Geometry
Line Segments, Rays, and Lines
Math Boxes 6.1
Geometry Hunt
Math Boxes 6.2
Turns
Math Boxes 6.3
Triangle Explorations
Math Boxes 6.4
Quadrangle Explorations
Math Boxes 6.5
Polygon Explorations
Math Boxes 6.6
Drawing Angles
Math Boxes 6.7
Marking Angle Measures
Measuring Angles
Math Boxes 6.8
Symmetric Shapes
Math Boxes 6.9
Math Boxes 6.10
Base-10 Block Decimal Designs
10×10 Grids
Symmetry
Math Boxes 6.11
Pattern-Block Prisms
Math Boxes 6.12
Math Boxes 6.13
Special Pages
Sunrise and Sunset Record
Length of Day Graph
National High/Low Temperatures Project
Activity Sheets
Paper Clock
Rulers
Multiplication/Division Fact Triangles 1
Multiplication/Division Fact Triangles 2

129
130
131
132
133
134
135
136
137
138
139
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

Activity Sheet 1
Activity Sheet 2
Activity Sheet 3
Activity Sheet 4

A Numbers Hunt

Look for numbers in your classroom. Write the numbers in the table. Look for numbers that you cannot "see" but you can find by counting or measuring. Record these numbers, too.

Number	Unit (if there is one)	What does the number mean?	How did you find the number? (count, measure, another way?)
Example: 16	Crayons	Tells how many crayons are in a box	Number is on the box
Example: 30	Inches	Height of my desk	Measured my desk

Number-Grid Puzzles

1. Complete the grid.

541			544						550
551		553			556			559	
	562			565					570
			574			577			
581				585			588		
		593						599	
	602				606				
			614						620

Fill in the missing numbers.
2.

	69
78	

3.

4.

	54	

5.

		700

6.

7.

Make up your own puzzles. Ask someone to solve them.
8.

9.

2 (two)
Use with Lesson 1.2.

Looking up Information

Math Message

1. Turn to page 270 in your Student Reference Book.

How many yards are there in 1 mile? \qquad yards

Work with a partner. Use your Student Reference Book for Questions 3-6.
2. Write your partner's first name. \qquad
Write your partner's last name. \qquad
3. Look up the word circumference in the Glossary. Copy the definition.
4. Read the essay "Tally Charts."
a. Then solve the Check Your Understanding problems.

Problem 1: \qquad
Problem 2: \qquad
b. Check your answers in the Answer Key.
c. Describe what you did to find the essay.
5. Find the Measurement section. Which of the following units of length is about the same length as a person's height?
a. yard
b. thumb
c. fathom
d. cubit
e. hand
f. foot

On which page did you find the answer? \qquad
6. Look up the rules of the game Less Than You! Play the game with your partner.

Using Mathematical Tools

In Problems 1 and 2, record the time shown on the clocks. In Problem 3, draw the minute hand and the hour hand to show the time.
1.

2.

3.

6:10

Use your ruler.
4. Measure the line segment. about \qquad inches
5. Draw a line segment 10 centimeters long.

Use your calculator to do these problems.
6. $23,573+859+6,051=$ \qquad
7. $20,748-8,967=$ \qquad
8. $466 \times 38=$ \qquad 9. $1,978 \div 23=$ \qquad

Use your Pattern-Block Template to draw the following shapes:
10. a rhombus
11. a hexagon
12. a trapezoid

Challenge

13. Which of the shapes in Problems 10-12 are quadrangles?

Math Boxes 1.5

1. What is today's date?

What will be the date in 6 days?
\qquad

What will be the date in 1 week?
\qquad
3. Write the number that is 10 more.

42 \qquad
160 \qquad
901 \qquad

Write the number that is 10 less.
59 \qquad
120 \qquad
5. About what time is it?

2. Fill in the missing numbers.

	174		
		205	

4. Count back by 3s.

$$
42
$$

\qquad , \qquad , 33
\qquad , \qquad
\qquad , \qquad
\qquad
\qquad , \qquad
\qquad , \qquad
\qquad , \qquad
6. Add.

$$
\begin{aligned}
& 9+0= \\
& 1+7= \\
& =2+5 \\
& \square=4+4
\end{aligned}
$$

$7+7=$ \qquad

Displaying Data

1. How many first names are there? \qquad
2. How many last names are there? \qquad
3. With which names will you work-first names or last names? \qquad
4. Make a tally chart for your set of names.

Names	
Number of Letters	Number of Children
2	
3	
4	
5	
6	
7	
8	
9	
10 or more	

5. How many letters does the longest name have? \qquad letters
The number of letters in the longest name is called the maximum.
6. How many letters does the shortest name have? \qquad letters The number of letters in the shortest name is called the minimum.
7. What is the range of the numbers of letters? \qquad letters (Hint: If you don't remember what the range is, look it up in your Student Reference Book.)

Challenge

8. What is the mode of the set of data? \qquad letters

Displaying Data (cont.)

9. Make a bar graph for your set of data.

Title:

-								

Name-Collection Boxes

1. Write 10 names in the 20-box.

20
3. Three names do not belong in this box. Cross them out. Then write the name of the box on the tag.

2. Write 10 names in the 24 -box.

24
4. Make up your own box.

Date

Time

Math Boxes 1.6

1. Complete the pattern.

2. Use $\mathbb{(}, \mathbb{(1)},(\mathbb{D}$, and ©

Show $\$ 0.89$ in two ways.

5. Count by 10s.
\qquad
\qquad
\qquad
\qquad , \qquad ,
\qquad

- \qquad , \qquad —, \qquad ,

2. 6,347

What value does the 6 have? \qquad

What value does the 7 have? \qquad

What value does the 3 have? \qquad

What value does the 4 have? \qquad

4. How many trees have exactly 6 bugs?
How many trees have exactly 3 bugs?
Number of Bugs Number of Trees per Tree

$\frac{2}{3}$
$\frac{1 / /}{4}$
$\frac{1 / / /}{1 /}$

6. Add.

$$
\begin{aligned}
& 4+8= \\
& \quad=9+2
\end{aligned}
$$

$4+3=$ \qquad
$5+5=$ \qquad

$$
=8+8
$$

Finding Differences

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

Use the number grid to help you solve these problems.

1. Which is less, 83 or 43 ? \qquad How much less? \qquad
2. Which is less, 33 or 78 ? \qquad How much less? \qquad
How much more? \qquad
How much more? \qquad

Find the difference between each pair of numbers.
5. 71 and 92
6. 26 and 46 \qquad
7. 30 and 62
8. 48 and 84 \qquad
9. 43 and 60
10. 88 and 110 \qquad

Skip Counting on the Number Grid

1. Start at 0 and count by 4 s on the number grid. Mark an X through each number in your count.
2. Start at 0 again and count by 5 s on the number grid.

Draw a circle around each number in your count.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150
151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170
171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190
191	192	193	194	195	196	197	198	199	200

3. List the numbers that are marked with both an X and a circle.

Math Boxes 1.7

1. Write 5 names in the 25-box.

25

2. Fill in the missing numbers.

4. Count back by 4s.

104 , \qquad , \qquad , \qquad 88 , \qquad , \qquad , \qquad

Write the number that is 100 less.
249 \qquad
527 \qquad
5. Draw hands on the clock to show 6:45.

\qquad , \qquad , \qquad
\qquad
\qquad
\qquad , \qquad
\qquad
6. Add.
$2+8=$ \qquad
$5+3=$ \qquad
$\square=6+7$
$=7+9$
$5+8=$ \qquad

Using a Calculator

Math Message

Use your calculator.

1. Sharon read the first 115 pages of her book last week. She read the rest of the book this week. If she read 86 pages this week, how many pages long is her book?

Answer: Her book is \qquad pages long.

Number model: \qquad
2. The paper clip was invented in 1868. The stapler was invented in 1900. How many years after the paper clip was the stapler invented?

Answer: The stapler was invented \qquad years later.

Number model: \qquad
3. $28+64+39=$ \qquad 4. $2,648-1,576=$ \qquad

Calculator Practice

Use your calculator.
5. Begin at 25. Count up by 6s. Record your counts below.

25
6. Begin at 90 . Count back by 9s.

90

Solve the calculator puzzles.

7. Enter 42	Change to 92	How?	8. Enter 362	Change to 862	How?
61	11		722	3,722	
136	216		1,604	804	
78	108		9,364	9,964	
108	88				

[^0]
Math Boxes 1.8

1. What is today's date?
\qquad
What will be the date in 11 days?
\qquad
What will be the date in 2 weeks?
\qquad
2. Use @, (D), © , and ©

Show $\$ 1.48$ in two ways.
\mid
5. Complete the bar graph.

Player A scores 4 points.

Player B scores 8 points.

Player C scores 3 points.

Player D scores 9 points.

2. 1,942

What value does the 4 have? \qquad

What value does the 9 have? \qquad

What value does the 1 have? \qquad

What value does the 2 have? \qquad

4. Find the difference between

74 and 24 \qquad

48 and 35 \qquad

60 and 39 \qquad

26 and 15 \qquad

6. Add.

$$
\begin{aligned}
& 9+5= \\
& 3+7= \\
& 5+6= \\
& =6+8 \\
& =9+3
\end{aligned}
$$

Using Coins

Math Message

1. You buy a carton of juice for 65 cents. Show two ways to pay for it with exact change. Draw ©s to show pennies, © \mathbb{D} s to show nickels, (D) to show dimes, and @s to show quarters.
a.
b.

Write each of the following amounts in dollars-and-cents notation. The first one is done for you.

Example

2. five dimes and seven pennies \qquad
3. fourteen dimes \qquad
4. two quarters and four pennies \qquad
5. three dollars and one nickel and three pennies \qquad
6. seven dollars and eight dimes \qquad

$$
\text { Write }=,<\text {, or }>
$$

7. three quarters ___ three dimes
8. ten dimes \qquad one dollar
9. \$0.67 \qquad seven dimes
10. $\$ 1.18$ \qquad @ @ @ (@)
11. (D)(D) (1) (1) (P® \qquad © (N) (P)
12. $\$ 2.05$ \qquad $\$ 2.50$

Use with Lesson 1.9.

Remember

= means is equal to
$<$ means is less than
$>$ means is greater than

Using Coins (cont.)

13. Circle the digit that represents dimes.
\$17.63
14. Circle the digit that represents cents.
\$18. 38
15. Circle the digit that represents dimes.

35 ¢
16. Jean wants to buy a carton of milk for $35 ¢$.

How much change will she get from 2 quarters? \qquad
Use @, © , © , and © to show her change in two ways.

Challenge

Use the Vending Machine Poster on Student Reference Book, page 236.
17. Marcy wants to get a strawberry yogurt drink and a chocolate milk from the vending machine. She has only dollar bills.
a. If the Exact Change light is on, can she buy what she wants? \qquad
b. If the Exact Change is off, how many dollar bills will she put in the machine? \qquad How much change will she get? \qquad

Date

Time

Math Boxes 1.9

1. Write 5 names in the 75-box.

75

3. What is 10 more?

614 \qquad
994 \qquad
2,462 \qquad

What is 100 more?
237 \qquad
3,965 \qquad

5. What time does the clock show?

What time will it be in 30 minutes?
2. Fill in the missing numbers.

4. Count back.
\qquad
1,011 , 1,010 \qquad
\qquad
\qquad
\qquad
\qquad , \qquad , \qquad
\qquad , \qquad , \qquad
\qquad , \qquad
6. Add.
$3+6=$ \qquad

$$
=5+7
$$

$=5+7$
$8+6=$ \qquad
$9+9=$ \qquad
$6+4=$ \qquad

A Shopping Trip

Use the Stationery Store Poster on Student Reference Book, page 238.

1. List the items you are buying in the space below. You must buy at least 3 items. You can buy 2 of the same item, but list it twice.

Item
Sale Price
2. Estimate how many dollar bills you will need to give the shopkeeper to pay for your items. \qquad dollar bills
3. Give the shopkeeper the dollar bills.
4. The shopkeeper calculates the total cost using a calculator.

You owe \$ \qquad —.
5. The shopkeeper calculates the change you should be getting. $\$$
6. Use $\mathbb{(}, \mathbb{(}),(\mathbb{D}, @$, and $\$ 1$ to show the change you got from the shopkeeper. \qquad

Challenge

7. Henry buys one pack of batteries and a box of crayons. How much money does he save buying them on sale instead of paying the regular price?

Regular Price Sale Price
batteries \$ \qquad . \qquad \$ \qquad . \qquad
\qquad
\$ \qquad .

Difference
Regular total \$ \qquad . \qquad

Sale total \$ \qquad .

Amount Saved \$ \qquad . \qquad

Coin Collections

Get your coin collection or grab a handful of coins from the classroom collection. Complete the problems below.

1. Count each kind of coin. Give a total value for each type of coin.
\qquad (P) $=\$$ \qquad . \qquad
\qquad (N) $=\$$ \qquad .
(D) $=\$$ \qquad .
Q $=\$$ \qquad .
2. What is the total value of all the coins? You may use a calculator.

Total value = \$ \qquad .
3. In the space below, draw a picture of your total. Use as few \$1, @, (D), $\mathbb{(N)}$, and \mathbb{P} as possible.

Challenge

4. Explain how you would enter your total amount on the calculator.
\qquad
\qquad
\qquad
5. Explain how you would go up to the next dollar amount without clearing your calculator. (Hint: A dollar amount is \$1.00, \$2.00, $\$ 3.00$, and so on.)
\qquad
\qquad
\qquad

Math Boxes 1.10

1. Use addition or subtraction to complete these problems on your calculator.

| Enter | Change to How? | |
| :--- | :--- | :--- | :--- |
| 894 | 2,894 | |
| 366 | 66 | |
| 27,581 | 28,581 | |
| 3,775 | 3,175 | |

3. Draw the bills and coins in two ways. $\$ 2.43$
4. In the number 38,642
the 4 means 40
the 8 means \qquad
the 6 means \qquad
the 3 means \qquad

5. Find the difference between

87 and 37 \qquad

72 and 55 \qquad

90 and 49 \qquad

47 and 26 \qquad

6. Complete the bar graph.

Frames and Arrows

Math Message

Find the pattern. Fill in the missing numbers.

1. $37,40,43$, \qquad
\qquad -
2. 27,25 , \qquad 21, \qquad , \qquad
3. \qquad 11, 15, \qquad
\qquad 4. \qquad __ 36, 33, 27
23,
, \square

Time
sing numbers.

Frames and Arrows
5.

6.

7.

8.

9. Make up one of your own.

Use with Lesson 1.11.

Patterns

Complete the number-grid puzzles.
1.

	52
	62

2.

3.

4. Draw dots to show what comes next.

5. Janie owns a magic calculator. When someone enters a number and then presses the Θ key, it changes the number. Here is what happened:

- Tom entered 15. He pressed Θ and the calculator showed 5 .
- Mary entered 12. She pressed Θ and the calculator showed 2.
- Regina entered 27. She pressed Θ and the calculator showed 17.

6. What do you think the calculator will show if Janie enters 109 and Θ ? \qquad
7. Explain how you know. \qquad

Challenge

8. The numbers below have a pattern. Fill in the missing numbers. Be careful: The same thing does not always happen each time.
$4,14,24,22,32,42,40,50,60,58$, \qquad , \qquad , \qquad
9. Describe the pattern.

Tic-Tac-Toe Addition

Draw a line through any three numbers whose sum is the target number in the square. The numbers may be in a row, in a column, or on a diagonal. Draw more than one line for each sum.

Think of some other Tic-Tac-Toe puzzles and write them below.
\square

\square

Math Boxes 1.11

1. Write 5 names in the 100-box.

2. Write the number that is 10 less 100 less 1,000 less

4,321 \qquad
\qquad
6,942 \qquad
\qquad
\qquad
7,011 \qquad
\qquad
\qquad
8,002 \qquad
\qquad

5. About what time is it?

How many minutes
until 2:00?
2. Fill in the missing numbers.

4. Count back.
\square
13
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 4 , \qquad , \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. Add.

$$
\begin{aligned}
& 4+9= \\
& 2+6= \\
& 8+7= \\
& \square=6+6 \\
& =9+8
\end{aligned}
$$

24 (twenty-four)
Use with Lesson 1.11.

Math Boxes 1.12

1. Use addition or subtraction to complete these problems on your calculator.

Enter Change to How?

4,501 1,501
173
873
15,604 16,604
9,646 9,346

3. I spend $\$ 3.25$ at the store. I give the cashier a $\$ 5.00$ bill.

How much change should I get?
\qquad
5.

Max ran \qquad miles.

Alec ran \qquad miles.

Tysa ran \qquad miles.
2. Write the number that has

4 hundreds
6 thousands
7 ones
2 tens
\qquad
Read it to a partner.
4. Find the difference between

91 and 21 \qquad
53 and 15 \qquad
70 and 29 \qquad
83 and 57 \qquad
6. Fill in the empty frames.

Finding Elapsed Times

Write the time shown on the first two clocks below. For the third clock, draw the hands to match the time.
1.

2.

3.

9:15
4. Megan leaves to go swimming at 4:05 and returns at 5:25. How long has she been gone?
5. Robert rides his bike 37 miles. He rides from 10:15 A.m. until 3:50 p.м. How long does it take him to ride 37 miles?
6. Joy leaves for school at the time shown on the first clock. She returns home at the time shown on the second clock. How long is Joy away from home?

Challenge

7. Peter baked cookies for a class party. He baked several different kinds. He began baking at the time shown on the first clock and finished at the time shown on the second clock. How long did it take Peter to bake the cookies?

Math Boxes 1.13

1. Complete the fact family.
$6+7=$ \qquad
$7+\ldots=13$
$13-6=$ \qquad
\qquad

$$
-7=6
$$

3. Allison swam 16 laps in the pool. Melodia swam 9. How many more laps did Allison swim than Melodia?
\qquad laps

4. Andre scored 7 points. Tina scored 5 points. How many points did they score altogether?
\qquad points
5. Lara brought 14 candies to school. She gave away 7 during recess. How many candies does she have now?
\qquad candies
6. Marque had $\$ 6$. His mother gave him \$8. How much money does Marque have now?
\$ \qquad
7. Add.
$0+7=$ \qquad
$5+1=$ \qquad
$3+3=$ \qquad
\qquad $=4+7$
\qquad

$$
=9+6
$$

Math Boxes 2.1

1. Write 5 names in the 120-box.

120
2. In the number 76,135
the 1 means $\quad / 00$
the 7 means \qquad
the 6 means \qquad
the 3 means

4. Find the rule. Fill in the empty frames.

Rule

10

6. Find the difference between

84 and 14 \qquad

68 and 25 \qquad

50 and 16 \qquad

66 and 42 \qquad

Fact Families and Number Families

Complete the Fact Triangles. Write the fact families.
1.

2.

3.

$$
]^{+}+
$$

$$
ـ^{+}
$$

$$
=
$$

$$
ـ^{-}-{ }_{\square}=
$$

$$
\square_{-}^{-}=
$$

Complete the number triangles. Write the number families.
4.

5.

$$
\begin{aligned}
& =\square+\square \\
& =\square \\
& =\square \\
& =\square
\end{aligned}
$$

Name-Collection Boxes

1. Three names do not belong. Mark them with a big \mathbf{X}.

100

1,680-1,580	
$30+70$	80
	1,000 +30
63	- 100
+37	9,999
	- 9,899
2 fifties	
$48+52$	

3. Write at least 10 names for 200.

200
2. Write at least 10 names for 40.

40

4. Write at least 10 names for 1,000 .

1,000

Using Basic Facts to Solve Fact Extensions

Fill in the unit box.

Unit

Complete the fact extensions.
1.
$\square=12-7$
\square
$=120-70$
\square
$=1,200-700$
2. $8+3=$ \qquad
$80+30=$
$800+300=$
3. \qquad

$$
=7+6
$$

$$
\ldots=70+60
$$

\qquad

$$
=700+600
$$

Complete the fact extensions.
4.

$$
\begin{aligned}
& =6+8 \\
& =16+8 \\
& =56+8
\end{aligned}
$$

5. $14-9=$ \qquad
$24-9=$ \qquad
$54-9=$ \qquad
6. $__=17-11$
\qquad

$$
=27-11
$$

$$
\ldots=47-11
$$

Use addition or subtraction to complete these problems on your calculator.

7. Enter 33	Change to 40	How?	8. Enter 430	Change to 500	How?
80	73		700	640	
80	23		1,000	400	

9. Why is it important to know the basic addition and subtraction facts?

Math Boxes 2.2

1. I spent $\$ 7.88$ at the store. I gave the cashier a $\$ 10$ bill. How much change should I get back?
\$ \qquad
2. Use your calculator to find the total.

4
$\$ 1=\$$ \qquad .

3 @ $=\$$ \qquad . \qquad
5 (D) $=\$$ \qquad . \qquad
7 (N) $=\$$ \qquad . \qquad
$2 ®=\$$ \qquad . \qquad
Total \$ \qquad .+
5. Put these numbers in order from smallest to largest.

$$
\begin{aligned}
& 1,060 \\
& 1,600 \\
& 1,006 \\
& 6,001
\end{aligned}
$$

2. Write the,+- fact family for 8,7 , and 15.
\qquad $+\ldots=$ \qquad
\qquad $+$ \qquad $=$ \qquad
\qquad - \qquad $=$
\qquad - \qquad $=$

4. What time is it?
\qquad
What time will it be in 20 minutes?

\qquad
How many minutes until 5:15?
\qquad
6. Fill in the missing numbers.

Math Boxes 2.3

1. Write the number that is

	10 less	100 more 1,000 more
368		
4,789		
40,870		
1,999		

3. Show $\$ 6.62$ in two other ways.
$\$ 5$
(Q)
(Q) @
(@)
(N) (1)
© $(P$
4. Fill in $<,>$, or $=$.

$$
49
$$

\square 495

69 hundreds \square 69 thousands

2. Complete the fact extensions.

$$
\begin{aligned}
13 & =6+7 \\
& =16+7 \\
\ldots & =26+7 \\
\square & =106+7 \\
\square & =136+7
\end{aligned}
$$

4. Fill in the empty frames.

5. Fill in the missing numbers.

8
20

Date

"What's My Rule?"

Fill in the blanks.

Time

34 (thirty-four)
Use with Lesson 2.3.

Fact Families and Number Families

1. Complete the Fact Triangles. Write the fact families.

2. Complete the number triangles. Write the number families.

\qquad
\qquad $+$ \qquad
\qquad
\qquad
\qquad
$=$

Enter the first number into your calculator. Use addition or subtraction to change it to the second number. Then tell what you did.

	Enter	Change to	How?		Enter	Change to	How?
3.	54	60		4.	230	300	
5.	90	81		6.	800	720	

Use with Lesson 2.3.

Number Stories: Animal Clutches

For each number story, write the numbers you know in the parts-and-total diagram. Write ? for the number you want to find. Solve the problem and write a number model.

1. Two pythons laid clutches of eggs. One clutch had 36 eggs. The other had 23 eggs. That was how many eggs in all?

Answer the question:
(unit)
Number model:

Total	
Part	Part

Check: Does my answer make sense?
2. A queen termite laid about 6,000 eggs on Monday and about 7,000 eggs on Tuesday. About how many eggs did she lay in all?
Answer the question: \qquad
Number model: \qquad

Total	
Part	Part

Check: Does my answer make sense?
3. Two agama lizards laid clutches of eggs. One clutch had 19 eggs. The other had 22 eggs. In all, how many eggs were laid?

Answer the question: \qquad
Number model: \qquad

Total	
Part	Part

Check: Does my answer make sense?
4. Two clutches of Mississippi alligator eggs were found. Each clutch had 47 eggs. What was the total number of eggs found?

Answer the question: \qquad
Number model: \qquad

Total	
Part	Part

Check: Does my answer make sense?

Number Stories: Animal Clutches (cont.)

5. Three ostriches laid clutches of eggs. The first clutch had 15 eggs, the second had 9 eggs, and the third had 10 eggs. That was how many eggs in all?
Answer the question: \qquad

Total		
Part	Part	Part

Number model: \qquad
Check: Does my answer make sense?

Challenge

6. An alligator clutch had 60 eggs. Only 12 eggs hatched. How many eggs did not hatch?

Answer the question: \qquad
Number model: \qquad

Total	
Part	Part

Check: Does my answer make sense?
7. Scientists say a green turtle can lay about 1,800 eggs in a lifetime. But only about 400 eggs hatch. About how many eggs do not hatch?

Answer the question:

Total	
Part	Part

Number model: \qquad
Check: Does my answer make sense?
8. On a separate sheet of paper, make up and solve a story using the Animal Clutches poster on pages 242 and 243 in your Student Reference Book.
Answer the question: \qquad

Total	
Part	Part

Number model: \qquad
Check: Does my answer make sense?

Date

"What's My Rule?"

Fill in the blanks.

1.in \downarrow	in	out
Rule		
Add 20 minutes	$1: 00$	

in	out
$2: 00$	$2: 50$
$3: 15$	$4: 05$
$5: 30$	$6: 20$
	$7: 55$
$8: 45$	

in	in	out
52	10	
Rule	104	
Add 25¢	204	
	256	
out	83¢	
	\$1.00	

5. in \downarrow	in	out
5		
Rule		20¢
Subtract 10		45¢
		50¢
out		63¢
		\$1.00

6. $\left.\begin{array}{c}\text { in } \\ \downarrow \\ \downarrow \\ \text { Rule } \\ \hline\end{array}\right]$

in	out
10ϕ	26ϕ
25ϕ	41ϕ
$\$ 1.20$	$\$ 1.36$
80ϕ	
	99ϕ

Math Boxes 2.4

1. I had a $\$ 10$ bill. I bought $\$ 3.92$ worth of candy. How much change should I get?
\qquad
2. Use a calculator to find the total.

2
$\$ 1=\$$
1 @ = \$
3 (D) $=\$$
$8(\mathbb{N}=\$$
$6 \mathbb{P}=\$$ \qquad
Total \$ \qquad
5. Use addition or subtraction to complete these problems on your calculator.

Enter	Change to How?	
4,501	1,501	
173	873	
15,604	16,604	
9,646	9,346	

2. Complete the Fact Triangle. Write the fact family.
\qquad

3. "What's My Rule?"

in	out	in
		Rule
14		
24		Subtract 7
39		$\begin{gathered} \tau_{\downarrow} \\ \text { out } \end{gathered}$
	42	
	65	

6. Find the difference between

71 and 41 \qquad

93 and 45 \qquad

60 and 22 \qquad

87 and 54 \qquad

Number Stories: Change-to-More and Change-to-Less

For each number story, write the numbers you know in the change diagram. Write ? for the number you want to find. Then solve the problem. Write the answer and a number model.

1. David had $\$ 22$ in his bank account. For his birthday, his grandmother deposited $\$ 25$ for him. How much money is in his bank account now?

Start	Change	End

Answer the question: \qquad
Number model: \qquad
Check: Does my answer make sense?
2. Jennifer had $\$ 19$ in her bank account. After babysitting, she is able to deposit $\$ 38$. How much money is in her bank account now?

Answer the question: \qquad
Number model: \qquad
Check: Does my answer make sense?
3. Omar had $\$ 53$ in his piggy bank. He used $\$ 16$ to take his sister to the movies and buy treats. How much money is left in his piggy bank?

Answer the question: \qquad
Number model: \qquad
Check: Does my answer make sense?
4. Cleo had $\$ 37$ in her purse. Then Jillian returned $\$ 9$ that she had borrowed. How much money does Cleo have now?

Answer the question: \qquad
Number model: \qquad
Check: Does my answer make sense?

Number Stories (cont.)

5. Tyler had $\$ 30$ in his wallet. At lunch he spent $\$ 17$. How much money does Tyler have now? Answer the question: \qquad

Start	Change	End

Number model:
Check: Does my answer make sense?
6. Andre had $\$ 61$ in his bank account. He withdrew $\$ 48$ to take on vacation. How much is left in his account?

Start	Change	End

Answer the question: \qquad
Number model:
Check: Does my answer make sense?

Challenge

7. Trung had $\$ 15$ in his piggy bank. After his birthday, he has $\$ 60$ in his bank. How much money did Trung get as birthday presents?

Answer the question: \qquad
Number model:
Check: Does my answer make sense?
8. Nikhil had $\$ 40$ in his wallet when he went to the carnival. When he got home, he had $\$ 18$. How much did he spend at the carnival?

Answer the question: \qquad
Number model:
Check: Does my answer make sense?

Parts-and-Total Number Stories

For each number story, write the numbers you know in the parts-and-total diagram. Write ? for the number you want to find. Then solve the problem. Write the answer and a number model.

1. There were 80 people at the concert on Saturday night and 50 people at the concert on Sunday night. Altogether, how many people went to the concert?

Answer the question:

Number model: \qquad

Total	
Part	Part

Check: Does my answer make sense?
2. About 800 pieces of mail are lost in the United States every day. About how many pieces of mail are lost in 2 days?

Answer the question:

Number model:

Check: Does my answer make sense?
3. The Ramirez family drove 600 miles during the first week of their vacation and 900 miles during the second week. How many miles did they drive in all? Answer the question: \qquad
Number model: \qquad

Total	
Part	Part

Check: Does my answer make sense?

Math Boxes 2.5

1. Write $<,>$, or $=$.

$45 ¢$	$\square \$ 0.45$
$4(D)$	$\square 3 @$
$\$ 1.85$	$\square \$ 3.00$
$5(\mathbb{N})$	\square 2(D), $1 \mathbb{N}$

3. Write this number:
six thousand, four hundred twenty-two
\qquad
Write the words for 5,931 .
\qquad
\qquad
4. How many children like grapes?

Fruit Choice	Number of Children
apples	////
grapes	$\mathrm{HH} /$
oranges	///
pears	HH HHI

2. Find the missing sums.

$$
4+5=
$$

\qquad

$$
\ldots=14+5
$$

$$
24+5=
$$

\qquad
$5+44=$ \qquad
4. The school chorus has 28 second graders and 34 third graders. How many children are the chorus?

6. Fill in the empty frames. Use two rules.

Temperature Differences

Use the map on page 244 in the Student Reference Book to answer Problems 1-4. Write the numbers you know in the comparison diagram. Write? for the number you want to find. Then solve the problem. Write the answer and a number model.

1. What is the difference between the normal high and low temperatures for San Francisco?

Answer the question: ${ }^{\circ} \mathrm{F}$

Number model: \qquad
Check: Does my answer make sense?

Quantity	Difference

2. What is the difference between the normal high and low temperatures for Minneapolis?

Answer the question: \qquad ${ }^{\circ} \mathrm{F}$

Number model: \qquad
Check: Does my answer make sense?

Quantity

Quantity	Difference

3. Which city has the largest difference between the normal high and low temperatures?
\qquad What is the difference? ${ }^{\circ} \mathrm{F}$
4. Which city has the smallest difference between the normal high and low temperatures?
\qquad What is the difference? \qquad ${ }^{\circ} \mathrm{F}$
5. The normal January low in Chicago is $25^{\circ} \mathrm{F}$ less than the normal spring low of $38^{\circ} \mathrm{F}$. What is the normal January low in Chicago? Answer the question: \qquad ${ }^{\circ} \mathrm{F}$

Number model: \qquad

Quantity	Difference

Check: Does my answer make sense?

Quantity

Date

Math Boxes 2.6

1. Write at least 5 names for 1,000 .

1,000

3. 14 dimes $=\$$ \qquad . \qquad

14 nickels $=\$$ \qquad . -

14 quarters $=\$$ \qquad .

3 quarters and 6 dimes

$$
=\$
$$

\qquad .
5. Complete the grid.

2. Use 15, 12, and 27. Write the number family.
\qquad
\qquad
\qquad
\qquad
4. "What's My Rule?"

in	out
4	
	12
0	
	21

6. Jonah had $\$ 52$. He bought a CD for $\$ 14$. How much money does he have now?

The Partial-Sums Addition Method

Make a ballpark estimate first. Write a number model to show your estimate. Next, solve using the partial-sums method and show your work. Then compare your answers with a partner's. If you disagree, use a calculator. If you did a problem incorrectly, work it again.

6. $\begin{array}{r} 751 \\ +\quad 757 \\ \hline \end{array}$	7. $\begin{array}{r} 743 \\ +\quad 504 \\ \hline \end{array}$	8. $\begin{array}{r} 257 \\ +\quad 245 \\ \hline \end{array}$
Ballpark estimate:	Ballpark estimate:	Ballpark estimate:
9. $\begin{array}{r} 298 \\ +\quad 419 \end{array}$	10. $\begin{array}{r} 487 \\ +\quad 313 \end{array}$	11. $\begin{array}{r} 1,438 \\ +\quad 694 \end{array}$
Ballpark estimate:	Ballpark estimate:	Ballpark estimate:

Change-to-More and Change-to-Less Number Stories

Write the numbers you know in the change diagram. Write ? for the number you want to find. Then solve the problem. Write the answer and a number model.

1. Nikki had a collection of 35 beanbag animals.

She gave 17 of the animals to her sister.
How many does she have now?

Start	Change	End

Answer the question: \qquad
Number model:
Check: Does my answer make sense?
2. Lewis delivered newspapers to 27 houses.

Fourteen more houses were added to his route. How many houses does he deliver to now?

Start	Change	End

Answer the question: \qquad
Number model: \qquad
Check: Does my answer make sense?
3. At 5:00 P.M. there were 100 people waiting for the fireworks. By 8:00 P.M. 300 more people had arrived. How many people were waiting then?

Answer the question: \qquad
(unit)
Number model:
Check: Does my answer make sense?
4. Make up your own change number story.
\qquad
\qquad

Answer the question: \qquad

End

Number model:
Check: Does my answer make sense?

Math Boxes 2.7

1.	10 more 100 more	1,000 more
65		
410		
602		
1,543		
7,095		

3. I spent $\$ 4.13$ at the store. I gave the cashier $\$ 5.00$. How much change should I receive?

Draw the fewest number of coins possible to show the change I received.
5. Fill in the empty frames. Use two rules.

2. Fill in the blanks.

$$
\begin{aligned}
& 34+\ldots=60 \\
& -\quad=19+21 \\
& 100=50+\ldots \\
& 70=\square-20
\end{aligned}
$$

4. Lily had 33 rings in one box and 29 in another. How many did she have in all? rings

Total	
Part	Part

6. Austin read his book for 45 minutes on Monday and for 25 minutes on Tuesday. How many more minutes did he read on Monday?
\qquad minutes

The Trade-First Subtraction Method

Solve using the trade-first subtraction method. Show your work. Use a ballpark estimate to check whether your answer makes sense. Write a number model for your estimate. Then compare your answers with a partner's. Use a calculator if you disagree. If you did a problem incorrectly, work it again.

Example Ballpark estimate: $250-200=50$	1. $\begin{array}{r} 91 \\ -\quad 46 \\ \hline \end{array}$ Ballpark estimate:	2. $\begin{array}{r} 63 \\ -\quad 38 \\ \hline \end{array}$ Ballpark estimate:
3. $\begin{array}{r} 129 \\ -\quad 112 \\ \hline \end{array}$	4. $\begin{array}{r} 208 \\ -\quad 106 \\ \hline \end{array}$	5. $\begin{array}{r} 213 \\ -\quad 206 \\ \hline \end{array}$
Ballpark estimate:	Ballpark estimate:	Ballpark estimate:

The Trade-First Subtraction Method (cont.)

6. $\begin{array}{r} 245 \\ -\quad 207 \\ \hline \end{array}$	7. $\begin{array}{r} 283 \\ -\quad 256 \\ \hline \end{array}$	8. $\begin{array}{r} 853 \\ -\quad 606 \\ \hline \end{array}$
Ballpark estimate:	Ballpark estimate:	Ballpark estimate:
9. $\begin{array}{r} 826 \\ -\quad 172 \\ \hline \end{array}$	$\text { 10. } \begin{array}{r} \\ 752 \\ -\quad 387 \\ \hline \end{array}$	11. $\begin{array}{r} 640 \\ -\quad 479 \\ \hline \end{array}$
Ballpark estimate:	Ballpark estimate:	Ballpark estimate:

Addition Strategies

Use any method you like to solve each addition problem. Show your work. Use a ballpark estimate to check whether your answer makes sense. Write a number model for your estimate.

Example	1. $\begin{array}{r} 439 \\ +\quad 356 \\ \hline \end{array}$	2. $\begin{array}{r} 318 \\ +\quad 226 \\ \hline \end{array}$
Ballpark estimate: $240+440=680$	Ballpark estimate:	Ballpark estimate:
3. $\begin{array}{r} 487 \\ +\quad 258 \\ \hline \end{array}$	4. $\begin{array}{r} 353 \\ +187 \end{array}$	5. $\begin{array}{r} 754 \\ +\quad 668 \\ \hline \end{array}$
Ballpark estimate:	Ballpark estimate:	Ballpark estimate:

Math Boxes 2.8

1. Put these numbers in order from smallest to largest.

32,764
8,596

32,199

85,096

3. Add. Show your work.

27
$+\quad 48$

5. Use your calculator. Write the answers in dollars and cents.
$64 \varnothing+\$ 1.73=\$$ \qquad . \qquad
$\$ 0.85+53 ¢=\$$ \qquad
$\$ 2.08+\$ 5.01=\$$ \qquad . -
$37 \phi+26 \phi=\$$ \qquad .
2. Use 87, 5, and 92. Write 2 addition and 2 subtraction number models.
\qquad
\qquad
\qquad
\qquad
4. "What's My Rule?"

in	out	in
10		Rule
21		Add 4
32		
	60	

6. Theo had 17 shells in his collection. He found 9 more at the beach. How many shells are in his collection now?
shells

Number Stories with Three or More Addends

1. José bought milk at 35 cents, apple juice at 55 cents, grape juice at 45 cents, and orange juice at 65 cents. How much money did he spend?

Answer the question: \qquad

Total			
Part	Part	Part	Part

Number model:

Check: Does my answer make sense?
2. Michelle drove from Houston, Texas, to Wichita, Kansas. On the first day she drove 245 miles. On the second day she drove 207 miles. On the third day she drove 158 miles and arrived in Wichita. How many miles did she travel in all?

Total		
Part	Part	Part

Answer the question: \qquad
Number model:

Check: Does my answer make sense?
3. Zookeepers watched a clutch of 54 python eggs. On the first day, 18 eggs hatched. On the next day, 11 more hatched. How many eggs still had not hatched?

Answer the question: \qquad

Total		
Part	Part	Part

Number model:

Check: Does my answer make sense?

Number Stories with Three or More Addends (cont.)

4. Carl has $\$ 2.50$ for juice or milk at lunch. On each of 2 days, he buys grape juice for 45 cents. On the third day, he buys milk for 40 cents. How much money does he have left?

Answer the question: \qquad

Total			
Part	Part	Part	Part

Number model:

Check: Does my answer make sense?
5. Janna started to read a 128-page book. She read 13 pages before dinner and 39 pages after dinner. How many pages does she have left?

Answer the question: \qquad
Number model:

Total		
Part	Part	Part

Check: Does my answer make sense?
6. The Flores family is driving from Minneapolis, Minnesota, to Bismarck, North Dakota. The distance is 501 miles. They drove 235 miles before lunch. After lunch they drove 150 miles and stopped for a rest. How many more miles will they drive?

Total		
Part	Part	Part

Answer the question: \qquad
Number model:

Check: Does my answer make sense?

Subtraction Strategies

Solve each subtraction problem using your own method. Show your work. Use a ballpark estimate to check whether your answer makes sense. Write a number model for your estimate.

Example Ballpark estimate: $230-130=100$	1. $\begin{array}{r} 93 \\ -\quad 47 \\ \hline \end{array}$ Ballpark estimate:	2. $\begin{array}{r} 487 \\ -\quad 129 \\ \hline \end{array}$ Ballpark estimate:
3. $\begin{array}{r} 361 \\ -\quad 248 \\ \hline \end{array}$ Ballpark estimate:	4. $\begin{array}{r} 724 \\ -\quad 396 \\ \hline \end{array}$ Ballpark estimate:	5. $\begin{array}{r} 515 \\ -\quad 367 \\ \hline \end{array}$ Ballpark estimate:

Math Boxes 2.9

1. Fill in the tag. Write at least 5 names for that number.

2. Subtract. Show your work.

$$
\begin{array}{r}
72 \\
-\quad 35
\end{array} \begin{array}{r}
153 \\
-\quad 28 \\
\hline
\end{array}
$$

5. About what time is it?

6. Complete the problems.

$+\quad \frac{+}{1,000}$

$$
\begin{array}{r}
1000560 \\
-\quad 300 \quad \\
\hline
\end{array}
$$

4. There are 17 boys and 24 girls in the math club. How many children in all are in the math club?

5. Jack answered 29 questions. José answered 37 questions. How many fewer questions did Jack answer than José?
questions

Math Boxes 2.10

1. Which tool would you use to measure the following?
yardstick ruler thermometer
temperature \qquad
height of the ceiling \qquad
length of your thumb \qquad

2. Measure the line segment in inches.
\qquad inches
\qquad

3. How many squares are shaded?

4. Circle the best unit of measurement. distance to Spain miles centimeters inches width of a crayon miles centimeters feet length of your journal miles yards inches

5. Measure the line segment in centimeters.
\qquad centimeters
\qquad
\square
6. How long is the fence around the flowers?
\qquad feet

Estimating and Measuring Lengths

Work with a partner. Estimate the lengths of things in the classroom in "class shoe" units. Write the estimate. Then use the "class shoe" strip to measure the object. Write the measurement.

Why is it important to use the same units everyone else is using to measure things?
\qquad
\qquad

Addition and Subtraction Practice

Add or subtract. Make a ballpark estimate to check your answer. Write a number model for your estimate.

Math Boxes 3.1

1. Show $\$ 10.78$ in two other ways.
$\$ 5$
$\$ 5$
@(@)
(D)
(1) (P)
(P) $(P$
\mid
2. Shade to show the following data.
A is 4 cm .
B is 3 cm .
C is 8 cm .
D is 7 cm .

3. Find the rule and complete the table.

in	out
117	112
119	
	116
	131
142	

4. Write a number story by filling in the blanks.

Tom collects coins. He has
\qquad quarters, \qquad dimes,
\qquad nickels, and \qquad pennies.

How many coins in all?
\qquad

6. Add. Show your work.

492
$+\quad 18$

Measuring Line Segments

Math Boxes 3.2

1. Complete the puzzle.

2. Count by 100s.
\qquad
\qquad
\qquad ;
\qquad ; 497 ; \qquad ;
\qquad ; \qquad ; \qquad ;
\qquad ; \qquad ; \qquad
3. It is 7:45 A.M. Draw the hour and minute hands to show the time 15 minutes earlier. What time does the clock show now?

4. 53 people were standing in line at 9:00 A.M. 97 people were standing in line at 10:00 A.M. How many more people were standing in line at 10:00 A.M.? \qquad people

Quantity	Difference

4. Subtract. Show your work.

5. Solve.
$\square=8+9$
\square
$9+5=$ \qquad
$900+500=$ \qquad
\qquad

$$
=12-4
$$

$$
=12,000-4,000
$$

Body Measures

Work with a partner to find each measurement to the nearest $\frac{1}{4}$ inch.

	Adult at Home	Me (Now)	Me (Later)
Date			
height	about ___ in.	about ___ in.	about ___ in.
shoe length	about ___ in.	about ___ in.	about ___ in.
around neck	about ___ in.	about ___ in.	about ___ in.
around wrist	about ___ in.	about ___ in.	about ___ in.
waist to floor	about ___ in.	about ___ in.	about ___ in.
forearm	about ___ in.	about ___ in.	about ___ in.
hand span	about ___ in.	about ___ in.	about ___ in.
arm span	about ___ in.	about ___ in.	about ___ in.
	about ___ in.	about ___ in.	about ___ in.
	about ___ in.	about ___ in.	about ___ in.
	about ___ in.	about ___ in.	about ___ in.

Estimating Lengths

1. Follow these steps using U.S. customary units: inches (in.), feet (ft), or yards (yd). Then follow these steps using metric units: millimeters (mm), centimeters (cm), decimeters (dm), or meters (m).

- Use personal references to estimate the measures.
- Record your estimates. Be sure to write the units.
- Measure with a ruler or tape measure. Record your measurements.

Objects	U.S. Customary Units		Metric Units	
	Estimate	Measurement	Estimate	Measurement
height of your desk				
long side of your calculator				
short side of the classroom				
distance around your head				

2. Choose your own things to estimate and measure.

Objects	U.S. Customary Units		Metric Units	
	Estimate	Measurement	Estimate	Measurement

Math Boxes 3.3

1. Write the number that is
10 less 100 less
$1,067 \ldots$
2. Choose a 3-digit number and write at least five names for that number.

3. $8+6=$ \qquad
$8+6+7=$
$8+6+7+5=$ \qquad

17	17	17
$+\quad 8$	8	8
	+5	
		5
		19

2. Measure to the nearest $\frac{1}{4}$ inch.

Draw a line segment $1 \frac{1}{2}$ inches long.

4. Fill in the missing amounts.

I had 384. I spent \qquad .
I have $15 ¢$ left.

I had 54c. I found \qquad . Now I have 83c.
6. Add. Show your work.
384
8,916
$\begin{array}{r}+675 \\ \hline\end{array}$
$\begin{array}{r}8,504 \\ \hline\end{array}$

Perimeters of Polygons

1. Record the perimeter (the distance around) of your straw rectangle and parallelogram. rectangle: about \qquad inches parallelogram: about \qquad inches
2. Use a tape measure to find each side and the perimeter.

Polygon	Each Side	Perimeter
triangle	about ___ in., about ___ in., about ___ in.	about ___ in.
triangle	about ___ in., about ___ in., about ___ in.	about __in.
square	about ___ in.	about ___ in.
rhombus	about ___ in.	about ___ in.
trapezoid	about \qquad in., about \qquad in. about \qquad in., about \qquad in.	about ___ in.

3. Find the perimeter, in inches, of the figures below.

\qquad
4. Draw each shape on the centimeter grid. square with perimeter $=16 \mathrm{~cm}$
rectangle with perimeter $=20 \mathrm{~cm}$

Measures Hunt

Find out about how long some objects are.
These objects will be personal references.
Use your personal references to estimate the lengths of other things.

1. Find things that are about 1 inch long, 1 foot long, and 1 yard long. Use a ruler, tape measure, or yardstick.
List your objects below.

About 1 inch (in.)
About 1 foot (ft)
About 1 yard (yd)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Find things that are about 1 centimeter long, 1 decimeter long, and 1 meter long.
Use a ruler, tape measure, or meterstick.
List your objects below.
About 1 centimeter (cm) About 1 decimeter (dm) About 1 meter (m)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Math Boxes 3.4

1. "What's My Rule?"

in	in	out
Rule	18	
		6
Subtract 9		4
$\begin{gathered} Z_{\downarrow} \\ \text { out } \end{gathered}$	16	
		SR

3. Fill in the empty frames and the rule box.

4. Write $<,>$, or $=$.
$1 \frac{1}{2}$ feet \qquad 16 inches

3 feet \qquad 2 yards

5 feet \qquad 60 inches

55 inches \qquad 1 yard

2. The driving distance between St. Louis and Denver is about 863 miles. If you go by way of Wichita, the distance is about 982 miles. How much farther is it to go by way of Wichita?
\qquad miles farther

4. Subtract. Show your work.

Unit
buttons

704
$\begin{array}{r}-\quad 86 \\ \hline\end{array}$

6,243

- 2,948

6. Measure to the nearest centimeter.
\qquad
\qquad

Draw a line segment 7 centimeters long.

Date

Time

Math Boxes 3.5

1. Find the perimeter.

perimeter $=$ \qquad
2. Yuri saved $\$ 24.85$. He earned $\$ 9.95$ more. How much did he have then?
\qquad
3. Add.

$$
\begin{aligned}
& 9+22+11= \\
& 13+17+16= \\
& 24+6+9=
\end{aligned}
$$

2. Measure to the nearest $\frac{1}{4}$ inch.
\qquad
\qquad

Draw a line segment $2 \frac{1}{2}$ inches long.

4. Write the equivalent lengths.

3 yards = \qquad ft
\qquad inches = 2 yards

50 millimeters $=$ \qquad centimeters

3 meters = \qquad centimeters

6. Make a ballpark estimate to check that the answer makes sense.
$492+108=$ \qquad
about \qquad
$\ldots=648+209$
about \qquad

Geoboard Perimeters

Materials \square geoboard and rubber bands, or geoboard dot paper
Work with a partner.

1. Suppose that the distance between two pins is 1 unit. Make a rectangle with a perimeter of 14 units.
Use rubber bands and a geoboard, or draw the rectangle on dot paper. Record the lengths of the sides in the table.

2. Now make a different rectangle that also has a perimeter of 14 units. Record the lengths of the sides for this shape.
3. Complete the table for other perimeters.
4. Try to make a rectangle or square with a perimeter of 13 units.
5. Try to make other rectangles or squares with perimeters that are an odd number of units.

Geoboard Perimeters		
Perimeter	Longer sides	Shorter sides
14 units	units	units
14 units	_ units	units
14 units	units	units
12 units	units	units
12 units	units	units
12 units	units	units
16 units	units	units

Challenge

Change the unit. Now 1 unit is double the distance between two points. Make a rectangle or square whose perimeter is an odd number of units.

Follow-Up

Look for a pattern in your table. Can you find one? Now, do not use a geoboard or dot paper. Find the lengths of the sides of a rectangle or square with a perimeter of 24 units. Then make or draw the shape to check your answer.

Tiling with Pattern Blocks

Materials \quad pattern blocks: square, triangle, narrow rhombus
 \square crayons

Work with a partner.

1. Use square pattern blocks. Look at the top rectangle on the next page. Cover as much of the rectangle as you can, placing all of the blocks inside it. There may be uncovered spaces at the edges. Do not overlap the blocks. Line them up so that there are no gaps. This is called "tiling."
2. Count and record the number of blocks you used.
3. Trace around the edges of each block. Then color any spaces not covered by blocks. Estimate how many blocks would be needed to cover the colored spaces.
4. Record how many blocks are needed to cover the whole rectangle.
5. Tile the second rectangle with triangles. Repeat Steps 2-4 above.
6. Tile the third rectangle with narrow rhombuses. Repeat Steps 2-4 above.

Follow-Up

7. The area of a shape is a measure of the space inside the shape. You measured the area of a rectangle three ways: with squares, triangles, and narrow rhombuses. Record the areas below.

The area of the rectangle is about \qquad squares.

The area of the rectangle is about \qquad triangles.

The area of the rectangle is about \qquad narrow rhombuses.
8. Which of the three pattern blocks has the largest area?

Which has the smallest area? \qquad
How did you decide? \qquad

Tiling with Pattern Blocks (cont.)

Cover this rectangle with squares.
About \qquad squares cover the whole rectangle.

About \qquad
Cover this rectangle with triangles.
triangles cover the whole rectangle.

Cover this rectangle with narrow rhombuses.

About

\qquad
narrow rhombuses cover the whole rectangle.

Straw Triangles

Materials \quad 4-inch, 6-inch, and 8-inch straws
 \square twist-ties

Work in a group to make as many different-size triangles as you can out of the straws and twist-ties. (Be sure that straws are touching at all ends.) Before you start, decide how you will share the work.

For each triangle, record the length of each side and the perimeter in the chart. The triangle made out of the shortest straws is already recorded.

Straw Triangles			
Side 1	Side 2	Side 3	Perimeter
$4 i n$.	4 in .	$4 i n$.	12 in.
-	\square	-	-

Follow-Up

Discuss these questions with others in your group.

1. Which triangles have similar shapes?
2. Which pairs of triangles have the same perimeter?
3. By looking at your constructions, estimate which triangle of each pair of triangles in problem 2 has the larger area (space inside the triangles).
4. What happens if you try to make a triangle out of two 4-inch straws and one 8 -inch straw?

Areas of Rectangles

Draw each rectangle on the grid. Make a dot inside each small square in your rectangle.

1. Draw a 3-by-5 rectangle.

Area $=$ \qquad square units
2. Draw a 6-by-8 rectangle.

Area $=$ \qquad square units
3. Draw a 9-by-5 rectangle.

Area $=$ \qquad square units

Fill in the blanks.
4.

This is a \qquad -by- \qquad rectangle.

Area $=$ \qquad square units

5.

This is a \qquad -by- \qquad rectangle.

Area $=$ \qquad square units
7.

This is a \qquad -by- \qquad rectangle.

Area $=$ \qquad square units

Math Boxes 3.6

1. Put these numbers in order from smallest to largest:

2. There were 144 cartons of milk delivered to school. 84 of the cartons were chocolate milk. The rest were 2% milk. How many cartons of 2% milk were delivered?
\qquad cartons

3. When I left home, I had $\$ 4.00$. I spent 73¢ at the fruit stand and $\$ 2.59$ at the grocery store. How much did I spend in all?
\qquad
How much do I have when I go home?

4. Solve.

\square	$=7+9$
	$=37+9$

$16-8=$ \qquad
$76-8=$ \qquad
$6+5=$ \qquad
$600+500=$ \qquad
4. Subtract. Show your work.

384
$-\quad 175$
---:
$-7,574$

6. Measure to the nearest centimeter.
\qquad

Draw a line segment 4 centimeters long.

76 (seventy-six)

More Areas of Rectangles

Make a dot inside each small square in one row. Then fill in the blanks.
1.

Squares in a row: \qquad
Number of rows: \qquad
Number model:
\qquad
Area $=$ \qquad square units
3.

Squares in a row: \qquad
Number of rows: \qquad
Number model:
\qquad
Area $=$ \qquad square units

Now, draw the rectangle on the grid. Then fill in the blanks.
4. Draw a 5-by-7 rectangle.

Number model:

$$
\begin{aligned}
& \times \ldots= \\
& \text { Area }=_\quad \text { square } \\
& \text { units }
\end{aligned}
$$

5. Draw an 8-by-8 rectangle.

Number model:

$$
\begin{aligned}
& \times \ldots= \\
& \text { Area }=_\quad \text { square } \\
& \text { units }
\end{aligned}
$$

6. Draw a 3-by-9 rectangle.

Number model:

Area $=\ldots$ square units

Math Boxes 3.7

1. What is the perimeter?

2. At 7:00 A.M., the temperature was $23^{\circ} \mathrm{F}$. At 10:00 A.m., the temperature was $40^{\circ} \mathrm{F}$. How much warmer was it at 10:00 A.M. than at 7:00 A.M.?
\qquad
${ }^{\circ} \mathrm{F}$ warmer
3. Complete the number story.

Amber ate \qquad grapes.

Zack ate \qquad grapes.

Sophie ate \qquad grapes.
\qquad grapes were eaten in all.

2. Measure to the nearest $\frac{1}{4}$ inch.
\qquad

Draw a line segment $2 \frac{3}{4}$ inches long.
4. Write $<,>$, or $=$.

Write your own.

6. Add. Show your work.

38	182
698	309
+202	

Diameters and Circumferences

1. Find numbers on the label of your can. Write some of them below. Also write the unit if there is one.
2. Record the diameter and circumference of your can.
can letter \qquad diameter: about \qquad cm circumference: about \qquad cm
3. Write the rule linking diameter and circumference:
\qquad

Review

4.

in	
$\sqrt{7}$	
Rule	
Double	
in	
5	
50	
500	
5,000	

5. $\stackrel{\text { in }}{\downarrow}$
Rule

in	out
12	
120	
1,200	
12,000	

6. $\begin{gathered}\text { in } \\ \downarrow \\ \downarrow\end{gathered}$

in	out
3	6
	20
5	10
70	
	400

7.

Use with Lesson 3.8.

Date
Time
Math Boxes 3.8

Area: \qquad square cm

3. Find the total value.

$$
\begin{aligned}
& 4 \AA 1 \\
& 3 @ \\
& 6 ® \\
& 2 \mathbb{D} \\
& 7 ®
\end{aligned}
$$

Total \$ \qquad

2. Subtract.
$49-17=$ \qquad
$69-17=$ \qquad
$199-17=$ \qquad
$2,119-17=$ \qquad
$9,139-17=$ \qquad
4. Subtract. Show your work.

563
-294
807
-429
6. Measure to the nearest millimeter.
\qquad
\qquad

Draw a line segment 20 millimeters long.

Units of Linear Measure

Choose a U.S. customary unit and a metric unit for each object.
Put a check in the box.

	U.S. Customary			Metric				
	in.	ft	yd	mi	mm	cm	m	km
thickness of a magazine								
length of hair								
diameter of a quarter								
height of a building								
distance to Paris								
length of a baseball bat								
circumference of a telephone pole								
perimeter of a baseball diamond								
depth of a lake								
Make up your own.								

Math Boxes 3.9

1. How many rows? \qquad
How many columns? \qquad
How many dots in all? \qquad

2. 2 children share 12 toys equally. How many toys does each child get?
\qquad toys
3. There are 3 cars. 4 people are riding in each car. How many people in all?
\qquad people
4. Each child has 4 lollipops. There are 16 Iollipops. How many children are there?
\qquad children

5. $5 \times 0=$ \qquad
$1 \times 8=$ \qquad
$2 \times 3=$ \qquad
\qquad

$$
=5 \times 3
$$

\qquad $=4 \times$ 10

Solving Multiplication Number Stories

Use the Variety Store Poster on page 239 of the Student Reference Book.

For each number story:

- Fill in a multiplication/division diagram with the numbers you know.

Write ? for the number you need to find.

- Use counters, draw pictures, or do whatever helps you find the answer.
- Record the answer with its unit. Check whether your answer makes sense.

1. Yosh has 4 boxes of mini stock cars. How many cars does he have?

Answer: \qquad

boxes	cars per box	total number of cars

2. How many cards are in 5 packages of file cards?

Answer: \qquad

packages	cards per package	total number of cards

3. Claire buys 8 packages of fashion pens. How many pens does she have?

Answer: \qquad

packages	pens per package	total number of pens

4. If your mother buys 2 packages of bright shoelaces, how many pairs of shoelaces does she buy?

Answer: \qquad

packages	pairs of shoelaces per package	total number of pairs of shoelaces

Bonus: About how much do the 2 packages cost? \qquad

Writing Multiplication Number Stories

Write 2 multiplication stories. For each story:

- Fill in the multiplication/division diagram. Write ? for the number you need to find.
- Use counters, draw pictures, or do whatever helps you find the answer.
- Record your answer with its unit. Check whether your answer makes sense.

1. \qquad
\qquad
\qquad

Answer: \qquad
2.
\qquad

Answer: \qquad

Date

Measuring Line Segments

Use your ruler to measure each line segment.
Measure to the nearest $\frac{1}{2}$ inch.
1.
about \qquad inches
2.
about \qquad inches
3.
about \qquad inches

Measure to the nearest $\frac{1}{4}$ inch.
4. \qquad
about \qquad inches
5.
about \qquad inches

Measure as precisely as you can.
6.
about \qquad inches

Math Boxes 4.1

1. Find the perimeter.

Perimeter $=$ \qquad
3. Solve.
\qquad
$12,469+100=$ \qquad
$12,469+1,000=$ \qquad
$12,469+10,000=$ \qquad
5. Circle the names that belong in the box.

56

$100-44 \quad 93-27 \quad 33+13$
$86-30$
8×7
$26+30$
$46+15 \quad 20+20+16$
2. Measure to the nearest $\frac{1}{4}$ inch.

4. Write $<,>$, or $=$.

3 decimeters \qquad 30 millimeters
$1 \frac{1}{2}$ yards \qquad 24 inches

45 centimeters \qquad 1 meter

9 feet \qquad 3 yards
6. What is the total value of the coins?

6 @
4 (D)
3 (1)
2 ®
Total value: \$ \qquad
正

More Multiplication Number Stories

- Fill in the multiplication/division diagram.
- Make an array with counters. Mark the dots to show the array.
- Find the answer. Write the unit with your answer. Write a number model.

1. Mrs. Kwan has 3 boxes of scented markers. Each box has 8 markers. How many markers does she have?

boxes	markers per box	total number of markers

Answer: \qquad Number model: \qquad
(unit)
2. Monica keeps her doll collection in a case with 5 shelves. On each shelf there are 6 dolls. How many dolls are in Monica's collection?

Answer: \qquad Number model:
3. During the summer Jack mows lawns. He can mow 4 lawns per day. How many lawns can he mow in 7 days?

Answer: \qquad (unit)

days	lawns per day	total number of lawns

Number model: \qquad

Perimeter

Measure the perimeter in inches of each figure.
1.
in.
\qquad

2.

in.

Perimeter: \qquad inches
3.
_in.

\qquad in.
Perimeter: \qquad inches
4.

in.

Perimeter: \qquad inches
5. Draw any figure with a perimeter of 20 centimeters.

Math Boxes 4.2

1. Draw a 2×4 rectangle.

Number model: \qquad \times \qquad $=$ \qquad
Area: \qquad square units
3. Fill in the numbers.

1,002; 1,001; 1,000; \qquad
\qquad ; \qquad
14,116; 14,117; 14,118; \qquad ;
\qquad ; \qquad
5,097; 5,098; \qquad ; \qquad
\qquad ; \qquad
5. Put these units of measure in order from smallest to largest.
mile \qquad
foot \qquad
yard \qquad
inch \qquad

2. 10 packs of gum on the shelf in the candy store. 8 sticks of gum per pack.
How many sticks of gum in all?

packs	sticks of gum per pack	total number of sticks of gum

4. Fill in the number grid.

6. Measure to the nearest centimeter.

Draw a line segment 5 centimeters long.

Division Practice

Use counters to find the answers. Fill in the blanks.

16 cents shared equally

1. by 2 people:
\& per person
¢ remaining
2. by 3 people:
\& per person
¢ remaining
3. by 4 people:
_ \& per person
_ $\&$ remaining

25¢ shared equally
4. How many people get 5¢?
\qquad people
_ \varnothing remaining
5. How many people get 36 ?
\qquad
___ \& remaining
6. How many people get 6¢?
\qquad
people
\qquad ¢ remaining

30 stamps shared equally

7. by 10	people:
___	stamps per
person	
_	stamps
	remaining

10. 21 days

7 days per week
\qquad weeks
\qquad days remaining
8. by 5 people:
person
stamps per
stamps
remaining
11. 32 crayons

6 crayons per box
boxes of crayons
\qquad
crayons remaining
9. by 6 people:
____ stamps per person
\qquad remaining
12. 24 eggs

6 eggs per row
____ rows of eggs
____ eggs remaining
13. There are 18 counters in an array. There are 6 rows.

How many counters are in each row? \qquad counters per row
14. Five children share 12 markers equally. How many markers does each child get? \qquad markers \qquad markers remaining

Date

Math Boxes 4.3

1. Find the perimeter.

2. Solve.
$45,582-10=$ \qquad
$45,582+100=$ \qquad
$45,582+1,000=$ \qquad
$45,582-10,000=$
\qquad
3. Draw the hands to show 10:20.

How many minutes
until 11:10?
2. Make a 4-by-4 array. Complete the number model.

4. Put these metric units of measure in order from smallest to largest.
centimeter \qquad
kilometer \qquad
millimeter \qquad
meter

6. Complete.

$\mathbf{y d}$	$\mathbf{f t}$
2	
5	
	9
	30

Solving Multiplication and Division Number Stories

Solve each number story. Use counters, draw an array, or do whatever helps you find the answer. Fill in the diagrams and write number models.

1. Robert has 3 packages of pencils. There are 12 pencils in each package. How many pencils does Robert have in all?

Answer: \qquad
Number model:
2. Robert gives 3 pencils to each of his friends.

How many friends will get 3 pencils each?

		friends	pencils per friend	total number of pencils
(unit)				

3. What if Robert shares his pencils equally among himself and 11 friends? How many pencils does each child get?

Answer: \qquad

Robert and friends	pencils per friend	total number of pencils

Number model: \qquad

packages	pencils per package	total number of pencils

Answer:
(unit)
Number model: \qquad
4. A class of 30 children wants to play ball. How many teams can be made with exactly 6 children on each team?

Answer:	(unit)	teams	children per team	total number of children
Number model:				

5. The same class of 30 children wants to have exactly 4 children on each team. How many teams can be made?

		teams	children per team	total number of children
Answer:	(unit)			
Number model:				

Math Boxes 4.4

1. Draw a shape with an area of 9 square centimeters.

2. Fill in the rule and the empty frames.

3. Add. Show your work.

478
309
$\begin{array}{r}2,047 \\ \hline\end{array}$
2. Draw an array and complete a number model to match the diagram.

packs	cards per pack	total number of cards
3	6	$?$

Number model:

4. Scientists studying green turtles counted 136 eggs in a clutch of eggs. 87 eggs did not hatch.

How many eggs did hatch?
\qquad
6. Write $<,>$, or $=$.

$3+8+7$	$4+8+6$
$7+7+9$	$9+9+5$
$9+1+8$	$11+5+3$
$8+8+8$	$15+5+7$
$5+35+17$	-15+18+25

Math Boxes 4.5

1. Use counters to solve.

Some children are sharing
22 marbles equally. Each child gets 6 marbles.

How many children are sharing?
(unit)
How many marbles are left over?

3. Subtract. Show your work.

Unit

406
-46
---:

Start	Change	End
	+107	392

Write a number model.

$$
+\ldots=
$$

2. Draw Xs in a 5-by-9 array.

How many Xs?
Write a number model for the array.

4. Add.

$$
\begin{aligned}
\ldots & =47+192 \\
\ldots & =147+292 \\
\ldots & =247+392
\end{aligned}
$$

6. Measure to the nearest $\frac{1}{4}$ inch.

Draw a line segment 3 inches long.

Date

Math Boxes 4.6

1. On the centimeter grid below, draw a shape with an area of 12 square centimeters.

2. Solve.
$2 \times 9=$ \qquad
$4 \times 0=$ \qquad
$工=66 \times 1$
$7 \times \ldots=70$
$\underline{工}=5 \times 8$

3. Justin bought 2 gallons of milk. Each gallon cost $\$ 2.79$. He paid with a $\$ 10$ bill. How much change did he receive?
4. Write a multiplication story by filling in the blanks.

8 rows of \qquad
6 \qquad in each row

How many \qquad
in all?
Write a number model.

4. Write the number sixteen thousand, three hundred two.

Write the words for 12,015.
\qquad
\qquad

6. Find the perimeter of the trapezoid.

Perimeter: \qquad

Math Boxes 4.7

1. Make equal groups.

30 days
make \qquad weeks
with \qquad days left over.

56 pennies
make \qquad quarters
with \qquad pennies left over.

3. Solve.
\qquad
$16=4 \times$ \qquad
$3 \times 4=$ \qquad
$5 \times 6=$ \qquad
$18=\ldots \times 3$
$7 \times 4=$ \qquad
5. Add. Show your work.

$\begin{array}{r}881 \\ +746 \\ \hline\end{array}$
$\begin{array}{r}6,709 \\ +\quad 448 \\ \hline\end{array}$
2. Draw a 6-by-3 array.

What is the number model?
\qquad \times \qquad $=$ \qquad
4. Write the \times, \div fact family for the numbers 3,8 , and 24.
$24=$ \qquad \times \qquad
$24=$ \qquad \times \qquad
\qquad $=24 \div$ \qquad
\qquad $=$ \qquad \div \qquad

6. There are 46 trees and 25 flowers. How many more trees are there than flowers?
\qquad trees
Write a number model.

How Many Dots?

Materials \square square pattern blocks
\square calculator

1. Estimate how many dots are in the array at the right. About \qquad dots

Make another estimate.
Follow these steps:
2. Cover part of the array with a square pattern block. About how many dots can you cover with one block?
dots
3. Cover the array. Use as many square pattern blocks as you can. Do not go over the borders of the array. How many blocks did you use?

blocks

4. Use the information in Steps 2 and 3 to estimate the total number of dots in the array. About \qquad dots

Challenge

5. Try to find the exact number of dots in the array.

Use a calculator to help you. Total number of dots = \qquad

Follow-Up

Describe how you found the exact number of dots. \qquad

Setting up Chairs

1. Record the answer to the problem about setting up chairs from Math Masters, page 52.

There were \qquad chairs in the room.
2. Circle dots below to show how the chairs were set up for each of the clues.

Rows of 2	Rows of 3	Rows of 4	Rows of 5
- 1 left over	- 1 left over	- 1 left over	0 left over

Date
Math Boxes 4.8

1. Measure to the nearest centimeter.
\qquad
\qquad
Draw a line segment 6 centimeters long.

2. Solve.

$$
2 \times 7=
$$

$8 \times 0=$ \qquad
\qquad

$$
=24 \times 1
$$

$$
5 \times \ldots=50
$$

$$
=5 \times 5
$$

5. Subtract. Show your work.

904
731
-368
2. Complete.
\qquad days in a week
\qquad days in two weeks
\qquad days in three weeks
days in four weeks

4. Complete.

20 dimes $=\$$ \qquad

20 nickels $=\$$ \qquad

20 quarters = \$ \qquad
10 quarters and 7 dimes $=$
\$ \qquad
6. Add.

$$
\begin{aligned}
& 15+15+13= \\
& 34+16+12= \\
& 23+13+17= \\
& 21+14+19=
\end{aligned}
$$

Estimating Distances

A Pretend Trip

Pretend you want to take a trip to see some of the sights in the United States. Find out about how far it is between locations.

1. The Statue of Liberty is number \qquad .

The Sears Tower is number \qquad .

The distance between them is about \qquad inches on the map.

That is about \qquad miles.
2. Pike's Peak is number \qquad .

The White House is number \qquad .

The distance between them is about \qquad inches on the map.

That is about \qquad miles.
3. Yellowstone National Park is number \qquad .

The Cowboy Hall of Fame is number \qquad .

The distance between them is about \qquad inches on the map.

That is about \qquad miles.
4. The Civil Rights Memorial is number \qquad .

Disneyland is number \qquad .

The distance between them is about \qquad inches on the map.

That is about \qquad miles.
5. Make up one of your own.
\qquad is number \qquad .
\qquad is number \qquad .

The distance between them is about \qquad inches on the map.

That is about \qquad miles.

Math Boxes 4.9

1. Use counters to solve.

18 marbles are shared equally.
Each child gets 5 marbles.
How many children are sharing?
(unit)
How many marbles are left over?
\qquad
3. Solve.
$3 \times$ \qquad $=9$
$\ldots=4 \times 5$
$2 \times 6=$ \qquad
$35=7 \times$ \qquad
$4 \times 6=$ \qquad
$8=$ \qquad $\times 2$
5. Solve. Each square equals 1 sq cm .

Area: \qquad square centimeters

2. Draw an array of 28 Xs arranged in 4 rows.

How many Xs in each row? Write a number model for the array. \square
4. Complete the Fact Triangle. Write the fact family.

6. Complete.

in	out	
8		
16		
	10	
50		
1788		
180		

Date
Math Boxes 4.10

1. 56,937

Which digit is in the
tens place?
Which digit is in the thousands place?

Which digit is in the hundreds place?

Which digit is in the ones place?

3. Write the number that has

5 hundreds
7 thousands
8 ones
4 tens
2 ten-thousands

Read it to a partner.
5. Solve.

$$
\begin{array}{r}
6,000 \\
300 \\
200 \\
+\quad 8 \\
\hline
\end{array}
$$

Place-Value Review

Follow the steps to find each number in Problems 1 and 2.

1. Write 6 in the ones place.
Write 4 in the thousands place.
Write 9 in the hundreds place.
Write 0 in the tens place.
Write 1 in the ten-thousands place.
2. Write 6 in the tens place.
Write 4 in the ten-thousands place.
Write 9 in the ones place.
Write 0 in the hundreds place.
Write 1 in the thousands place.
\qquad ,
3. Compare the two numbers you wrote in Problems 1 and 2.

Which is greater? \qquad
4. Complete.

The 9 in 4,965 stands for 9 \qquad or \qquad 900

The 7 in 87,629 stands for 7 \qquad or \qquad .

The 4 in 48,215 stands for 4 \qquad or \qquad .

The 0 in 72,601 stands for 0 or \qquad
Continue the counts.
5. 4,707; 4,708; 4,709; \qquad ; \qquad ; \qquad
6. 7,697; 7,698; 7,699; \qquad ; \qquad ; \qquad
7. 903; 902; 901; \qquad ; \qquad ; \qquad
8. 6,004; 6,003; 6,002; \qquad ; \qquad ; \qquad
9. 47,265; 47,266; 47,267; \qquad ; \qquad ;

Write the number that is 1,000 more.
10. 6,583
11. 9,990
12. 39,510
\qquad
Write the number that is 1,000 less.
13. 6,583 \qquad 14. 9,990 \qquad 15. 20,000

Math Boxes 5.1

1. 13 crayons are shared equally among 3 children.

How many crayons does each child get?

How many crayons are left over?
\qquad
3. Fill in the unit box.

Then multiply.
$2 \times 5=$ \qquad

$7 \times 3=$ \qquad
$工=5 \times 5$
$\underline{L}=2 \times 7$
$工=4 \times 6$

2. If a map scale shows that 1 inch represents 200 miles, then

2 inches represents \qquad miles

3 inches represents \qquad miles

5 inches represents \qquad miles

7 inches represents \qquad miles

4. Complete the number-grid puzzles.

5. Draw a figure with a perimeter of 12 centimeters.

6. The "about 3 times" circle rule:
For any circle, the

Unit
inches

diameter	circumference
8	
10	
50	

Math Boxes 5.2

1. Write the number. This number has

7 thousands
8 tens
5 ten-thousands
1 one
0 hundreds
\qquad

3. \quad Draw a 4×6 rectangle.

Number model: \qquad $\times \ldots=$

Area: \qquad square units $=$ | SRB |
| :--- |
| $136-138$ |
| |
| |

5. Fill in the rule and then the empty frames.

6. Complete the Fact Triangle and write the fact family.

\qquad $=$
\qquad $\times \ldots$ \qquad
\qquad \div \qquad $=$ \qquad
\qquad \div \qquad $=$ \qquad 4
7. Write a multiplication story by filling in the blanks.

8 rows.
5 \qquad in each row.

How many in all? \qquad

Write a number model.
\qquad
6. Fill in the unit box. Write the missing number in the diagram. Write a number model.

Total	
426	
Part	Part
285	

Math Boxes 5.3

1. Write $<,>$, or $=$.

263,473 ___ 263,107
37,261 \qquad 37,621

99,999 \qquad 111,111

Make up your own.

3. Fill in the unit box. Then multiply.
$5 \times 3=$ \qquad

$$
=4 \times 5
$$

$3 \times 3=$ \qquad
\qquad

$$
=7 \times 3
$$

\qquad

$$
=5 \times 5
$$

5.

Days of Indoor Recess

What is the median number of days
of indoor recess? \qquad days
2. If a map scale shows that 1 cm represents $1,000 \mathrm{~km}$, then
\qquad
2 cm represents km

9 cm represents \qquad km

16 cm represents \qquad km

20 cm represents \qquad km

4. On Tuesday Gabriela put $\$ 76$ in her bank account. Now she has $\$ 123$. How much money did she have in her bank account on Monday?
\$ \qquad

6. Measure to the nearest $\frac{1}{4}$ inch.

Draw a line segment $2 \frac{1}{4}$ inches long.

Working with Populations

10 U.S. Cities with the Largest Populations		
	1980^{*}	1995*
New York, NY	$7,071,639$	$7,380,906$
Los Angeles, CA	$2,968,528$	$3,553,638$
Chicago, IL	$3,005,072$	$2,721,547$
Houston, TX	$1,611,382$	$1,744,058$
Philadelphia, PA	$1,688,210$	$1,478,002$
San Diego, CA	875,538	$1,171,121$
Phoenix, AZ	790,183	$1,159,014$
San Antonio, TX	785,940	$1,067,816$
Dallas, TX	$1,007,618$	$1,053,292$
Detroit, MI	$1,027,974$	$1,000,272$

*U.S. Census data
Use this table to solve the problems.

1. List the cities that gained population from 1980 to 1995.
2. List the cities that lost population from 1980 to 1995.
3. Look at your answers to Problem 1. Name a city where the population increased by
a. more than 100,000
b. about 100,000
c. less than 100,000
4. In 1980, which two cities had a population about half that of Houston, TX?
5. In 1995, which city had a population about double that of

Philadelphia, PA? \qquad
6. Which city had the smallest change in population? \qquad

Math Boxes 5.4

1. For the number $5,749,862$ the 4 means 40,000
the 5 means \qquad
the 8 means \qquad
the 7 means
the 9 means \qquad
2. Find the perimeter.

Perimeter $=\longrightarrow$ (unit)

5. Write a division story by filling in the blanks.
There are 48 \qquad in

6 rows.
How many \qquad are
in each row? \qquad
Write a number model.
\qquad

2. Complete the Fact Triangle and write the fact family.

4. Teesha has 345 marbles. Keiko has 279 marbles. How many fewer marbles does Keiko have than Teesha?
\qquad SRB
6. Measure to the nearest centimeter.
\qquad

Draw a line segment 4.5 centimeters long.

How Old Am I?

1. On what date were you born? \qquad
2. How old were you on your last birthday? \qquad years old
3. About how many minutes old do you think you were on your last birthday? Make an X next to your guess.
\qquad between 10,000 and 100,000 minutes
\qquad between 100,000 and 1,000,000 minutes
\qquad between 1,000,000 and 10,000,000 minutes
Use your calculator.
4. a. About how many days old were you on your last birthday? Do not include any leap year days.
b. That's about how many hours?
c. That's about how many minutes?

Challenge

Adding Leap Year Days

5. a. List all of the leap years from the time you were born to your last birthday.
b. That adds how many extra days to your last birthday?
c. How many extra minutes?
6. Add the number of extra minutes to the number of minutes in your answer in Problem 4c.
How many minutes are there in all?
7. On my last birthday, I was about \qquad minutes old.

Math Boxes 5.5

1. Circle the largest number.

Underline the smallest number.
1,099,999
697,432
697,500
697,490
1,110,000
697,433
3. Circle the number that is about 10,000 less than 30,000.

56,023
21,004

35,900
15,999

5. Body-plus-tail lengths (inches) for 13 cats:

30, 29, 28, 24, 29, 35, 16, 27,
29, 36, 28, 31, 32
Median = \qquad

Maximum = \qquad
2. If a map scale shows that 1 in . represents 50 miles, then
\qquad in. represents 200 miles
\qquad in. represents 300 miles

9 in. represents \qquad miles

11 in. represents \qquad miles

4. Fill in the unit box. Then multiply.

$$
\begin{aligned}
4 \times 3 & = \\
2 \times 7 & =- \\
- & =5 \times 7 \\
& =2 \times 5 \\
- & =6 \times 5
\end{aligned}
$$

6. Draw a shape with an area of 16 square units.
How many sides does your shape have? \qquad sides

Use with Lesson 5.5.

Finding the Value of Base-10 Blocks

Materials $\quad \square$ classroom supply of base-10 blocks

Work in a group.

1. Estimate the value of the base-10 blocks. Don't let anyone in your group see your estimate.
Estimate: \qquad
2. Plan how your group will find the actual value of the blocks and what each person will do to help. Then carry out your plan. Describe your job.
3. What is the actual value of the base-10 blocks? \qquad
4. Write the estimates of your group and the actual value of the base-10 blocks in order from smallest to largest. Circle the actual value of the base-10 blocks.
5. a. Which estimate was closest to the actual value? \qquad
b. How many estimates were higher than the closest estimate? \qquad
c. How many estimates were lower than the closest estimate? \qquad
d. How far was the highest estimate from the actual value? \qquad
e. How far was the lowest estimate from the actual value? \qquad
6. How does your estimate compare to the actual value?
7. If you have extra time, put part of the block supply to the side.

First estimate its value and then find its actual value.

Squares, Rectangles, and Triangles

Materials $\quad \square$ straightedge $\quad A$
H.

D•

- B

G•

- F
- E

\dot{C}

${ }_{-}$

Work on your own or with a partner.

1. Use your straightedge to draw line segments between points A and B, B and C, C and D, and D and A.

What kind of shape did you draw? \qquad
2. Now draw line segments between points E and F, F and G, G and H, and H and E.

What kind of shape did you draw? \qquad
3. Draw line segments between points E and G and between points F and H.

How many different sizes of squares are there? \qquad
How many squares in all? \qquad
4. How many different sizes of triangles are there?

How many triangles in all? \qquad
5. How many rectangles are there that are not squares? \qquad

Pattern-Block Perimeters

Materials \square pattern blocks: square, large rhombus, small rhombus, triangle
Work on your own or with a partner.

1. Imagine that each polygon is "rolled" along a line, starting at point S.
Estimate the distance each polygon will "roll" after 1 full turn. Mark an X at the point you think the polygon will reach.
2. Check your estimate by "rolling" a pattern block that matches the polygon. Circle the point reached by the pattern block.

3. Which 3 shapes have about the same perimeter?
4. Which of these 3 shapes do you think has the largest area? \qquad
5. Which of the 4 shapes do you think has the smallest area?

Date

Math Boxes 5.6

1. In the number 6,940,173

the 9 means 900,000

the 6 means \qquad
the 1 means \qquad
the 4 means
the 7 means

3. Use your calculator.

Enter	Change to	How?
894	12,894	
1,366	966	
627,581	628,581	
43,775	43,175	

4. Draw a 7-by-6 array.

What is the number model?

$$
L_{\square}=
$$

6. Add.

72	
28	407
374	283
$+\quad 101$	$+\quad 19$

Place Value in Decimals

If the grid is ONE, then which part of each grid is shaded?
Write a decimal and a fraction below each grid.
1.

fraction: \qquad decimal: \qquad
2.

fraction: \qquad
decimal: \qquad
3.

fraction: \qquad decimal: \qquad

Place Value in Decimals (cont.)

4. Which decimal in each pair is greater? Use the grids in Exercises 1-3 to help you.
0.5 or 0.08
0.08 or 0.72
0.5 or 0.72

Color part of each grid to show the decimal named.
5. Color 0.7 of the grid.

6. Color 0.07 of the grid.

7. Color 0.46 of the grid.

8. Write $0.7,0.07$, and 0.46 in order from smallest to largest.

Use the grids in Exercises 5-7 to help you. \qquad

Challenge

Color part of each grid to show the fraction named.
9. Color $\frac{4}{10}$ of the grid.

10. Color $\frac{1}{2}$ of the grid.

11. Color $\frac{23}{100}$ of the grid.

12. Write $\frac{23}{100}$ as a decimal. \qquad

Math Boxes 5.7

1. Circle the largest number.

Underline the smallest number.
2,999,999
946,487
946,800
946,793
4,000,007
946,200
3. Solve.

Double 2 \qquad

Double 10 \qquad

Double 75 \qquad

Double 1,000 \qquad

Double 1,500 \qquad
5. Ages of 9 teachers:
$30,24,49,50,38,44,40,35,51$
Median = \qquad

Maximum = \qquad
2. If a map scale shows that 1 cm represents 25 miles, then
\qquad cm represents 125 miles
\qquad cm represents 200 miles
\qquad cm represents 375 miles
20 cm represents \qquad miles

4. Fill in the unit box. Then multiply.
$4 \times 5=$ \qquad
$2 \times 6=$ \qquad
$3 \times 5=$ \qquad
\qquad

$$
=7 \times 4
$$

\qquad

$$
=6 \times 5
$$

6. Find the perimeter.

Perimeter: \qquad

Exploring Decimals

A	B	C	D
27 hundredths	2 tenths, 7 hundredths	0. 27 \qquad	$\frac{27}{100}$
hundredths	tenths, __ hundredths	0.	
_ hundredths	tenths, ___ hundredths	0.	
hundredths	tenths, ___ hundredths	0.	
_ hundredths	tenths, ___ hundredths	0.	
hundredths	tenths, __ hundredths	0.	
___ hundredths	_ tenths, ___ hundredths	0.	

Math Boxes 5.8

1. For the number $4,963,521$

4 means $4,000,000$

3 means \qquad

1 means \qquad

6 means \qquad

9 means \qquad
3. Solve.

3,976
$-\quad 1,439$

14,256

- 3,661

5. Draw a 3×7 rectangle.

Number model: \qquad \times \qquad $=$ \qquad
Area: \qquad square units
2. If each grid is ONE, what part of each grid is shaded? Write the decimal.

\qquad

4. How many slices does each person get if 64 slices of pizza are shared equally among 4 people?

Answer: \qquad (unit)

Number model:
\qquad

6. Draw the hands to show 5:50.

How long until 8:30?
hours \qquad minutes

Decimals for Metric Measurements

1. Fill in the missing information. Put longs and cubes end to end on a meterstick to help you.

Length in Centimeters	Number of Longs	Number of Cubes	Length in Meters
24 cm	2	4	0.24 m
36 cm	-	-	m
cm	0	3	m
8 mm		-	0.3 m
cm			
cm	4		

Work with a partner. Each partner uses base-10 blocks to make one length in each pair. Compare the lengths and circle the one that is greater.
2. 0.18 or 0.5
3. 0.2 or 0.08
4. 0.09 or 0.12
5. 0.24 or 0.42
6. 0.10 or 0.02
7. 0.3 or 0.24

Follow these directions on the ruler below.
8. Make a dot at 4 cm and label it with the letter A.
9. Make a dot at 0.1 m and label it with the letter B.
10. Make a dot at 0.15 m and label it with the letter C.
11. Make a dot at 0.08 m and label it with the letter D.

Math Boxes 5.9

1. Put these numbers in order from smallest to largest.

998,752 \qquad

1,000,008 \qquad

750,999

1,709,832 \qquad
3. Solve.

Double 6 \qquad

Double 24 \qquad
Double 59

Double 113

Double 642 \qquad
5. Median number of books read?

Maximum number of books read? \qquad

2. Write the number that has

2 in the ones place
6 in the tenths place
7 in the hundredths place
\qquad
4. Fill in the unit box. Then multiply.
$工=3 \times 3$

$\ldots=4 \times 6$
$5 \times 5=$ \qquad
$3 \times 6=$ \qquad
$2 \times 4=$ \qquad
6. 7 boxes. 7 cans per box.

How many cans in all?
\qquad cans

9 cars. 3 people per car.
How many people in all?
people

How Wet? How Dry?

1. Use the scale at the left and the map on page 245 of the Student Reference Book. Make a dot for the level of precipitation in each of the following cities:
Phoenix, Helena, Denver, Cleveland, and Asheville.
Write the name of the city next to the dot.
2. Which city gets about 2 centimeters less rain than New York?
\qquad
3. Which city gets about half as much rain as Denver?
4. Which city gets about 5 times as much rain as Helena?
5. A decimeter is 10 centimeters. Which cities on the map get at least 1 decimeter of rain?

Did You Know?

According to the National Geographic Society, the rainiest place in the world is Mount Waialeale in Hawaii. It rains an average of about 1,170 centimeters a year on Mount Waialeale.

Challenge

6. Suppose it rained 1,170 centimeters in your classroom. Would the water reach the ceiling?
millimeters $=1,170$ centimeters $=$ \qquad meters

Answer: \qquad
Use with Lesson 5.10.

Math Boxes 5.10

1. Complete the Frames and Arrows.

2. Complete.

2 hours $=$ \qquad minutes

5 weeks = \qquad days

3 hours = \qquad minutes

2 years = \qquad days

5. Add.

3	3
96	33
104	333
+327	$+3,333$

2. Color 0.6 of the grid.

3. Circle any measurements in Column B that match the one in Column A.

Column A	Column B
2 feet	$\begin{array}{ll} \hline 12 \mathrm{in.} & 3 \mathrm{yd} \\ 24 \mathrm{in} . & 1 \mathrm{yd} \end{array}$
3 feet	$\begin{array}{ll} 36 \mathrm{in} . & 1 \mathrm{~m} \\ 1 \mathrm{yd} & 30 \mathrm{in} . \end{array}$
2 yards	$\begin{array}{ll} 50 \mathrm{in} . & 72 \mathrm{in} . \\ 6 \mathrm{ft} & 9 \mathrm{ft} \end{array}$

6. Complete.

in	out
9	
15	
	7
	10

More Decimals

Use your place-value tool to help you.
Write the number that matches each description.

1. 4 in the tenths place

2 in the thousandths place
7 in the hundredths place
0 in the ones place
\qquad
3. 4 in the thousandths place

2 in the ones place
7 in the hundredths place
0 in the tenths place
2. 5 in the tenths place

3 in the tens place
5 in the ones place
3 in the hundredths place
4. 0 in the hundredths place 6 in the ones place
8 in the thousandths place
0 in the tenths place
5. With your partner, decide how to read each of the decimals in Problems 1-4.

Write each number below as a decimal.
6. nine-tenths \qquad
8. fifty-three hundredths \qquad
10. seven and seven-thousandths \qquad 11. sixty and four-hundredths
13. sixty-two thousandths
12. eight hundred \qquad
7. thirty-thousandths \qquad
9. sixty and four-tenths
\qquad
\qquad

Fill in the missing numbers.

Abstract

\square Unit
meter
14.

Math Boxes 5.11

1. How much of this grid is shaded?
\qquad \longrightarrow

2. Circle the number that is about 1 million less than 6 million.

50,023

6,900,800

4,986,500

3,090,222

5. Draw a 4-by-9 array of Xs.

How many Xs in all?
Write a number model.

2. Write the number that has

4 in the tenths place
0 in the hundredths place
6 in the ones place
9 in the thousandths place
\qquad

4. Fill in the unit box. Then multiply.
$3 \times 5=$ \qquad

$4 \times 6=$ \qquad
\qquad

$$
=7 \times 5
$$

\qquad

$$
=4 \times 4
$$

$$
\ldots=6 \times 3
$$

6. True or false? Circle one.

The line segment is 6.2 centimeters long.
true false

Math Boxes 5.12

1. Solve.
$16+9=$ \qquad
$16+90=$ \qquad
$16+900=$ \qquad
$16+9,000=$ \qquad
$16+90,000=$ \qquad
2. Find the differences between these high and low temperatures.

	High	Low	Difference
Pittsburgh	$92^{\circ} \mathrm{F}$	$66^{\circ} \mathrm{F}$	
Tempe	$102^{\circ} \mathrm{F}$	$88^{\circ} \mathrm{F}$	
Detroit	$29^{\circ} \mathrm{F}$	$17^{\circ} \mathrm{F}$	
Charlotte	$37^{\circ} \mathrm{F}$	$23^{\circ} \mathrm{F}$	

5. Add. Look for easy combinations.
$25+13+5=$ \qquad
$19+11+23=$ \qquad
$33+14+27=$ \qquad
6. Color 0.08 of the grid.

7. True or false? Circle one.

The line segment is 4.6 centimeters long. true false
6. Write the number that has

6 in the ones place
4 in the tenths place
3 in the hundredths place
2 in the thousandths place

Math Boxes 5.13

1. Draw line segments $A B$ and $C D$.
$A \cdot$

- B
C •

3. Draw a quadrangle.

4. Circle the shape that has line symmetry.

5. Circle the pictures that show 3-dimensional shapes.

Line Segments, Rays, and Lines

1. Write S next to each line segment. Write R next to each ray. Write L next to each line.

Points D, T, Q, and M are marked. Use a straightedge to draw the following.
2. Draw $\overrightarrow{Q T}$. Draw $\overrightarrow{D T}$. Draw $\overleftrightarrow{M Q}$.
D.
${ }^{T}$
M.

- Q

Draw a line segment between

Example

 each pair of points. How many line segments did you draw?
3.
P 。
4.
R 。
A.

0 .
.E
. L
U •
4 points
\qquad line segments \qquad line segments

Math Boxes 6.1

1. Use the "about 3 times" circle rule to complete the table below:
For any circle, the circumference is about 3 times the diameter.

diameter	circumference
	12
	18
	27

3. Fill in the unit box. Then divide.
$30 \div 6=$ \qquad
$12 \div 4=$ \qquad
$20 \div 5=$ \qquad
\qquad

$$
=14 \div 7
$$

$$
=9 \div 3
$$

5. Write $<,>$, or $=$.
0.65 \qquad 0.56
0.07 \qquad 0.7
0.098 \qquad 0.102
73.4 \qquad 75.2
6. In the number 2.673
the 6 means 6 tenths
the 3 means \qquad
the 7 means \qquad
the 2 means

7. Write 4 division names for 6 .

8. Solve.
$15-9=$ \qquad
$25-9=$ \qquad
$55-9=$ \qquad
$85-9=$ \qquad
$105-9=$ \qquad

Date

Geometry Hunt

parallel line segments

Time

Part 1

Look for things in the classroom or hallway that are parallel. Look for things that intersect. List these things below or draw a few of each of them on another sheet of paper.

Parallel

\qquad
\qquad

Intersecting

\qquad

Part 2

Look for things in the classroom or hallway that have one or more right angles. List these things below or draw a few of them on another sheet of paper.

Math Boxes 6.2

1. Draw a ray, $\overrightarrow{A B}$. Draw a line segment, $\overline{C D}$. Draw a line, $\overleftrightarrow{E F}$.

\dot{A}	\dot{B}
\dot{C}	\dot{D}
\dot{E}	\dot{F}

$\stackrel{888}{88}$

3. Complete the Fact Triangle. Write the fact family.

4. What is the difference in points between Players B and C?

\qquad What are the total points scored for all players?
\qquad points

5. Complete.

Total		
Part	Part	Part
217	197	300

Number model:

4. Complete.

6. Write equivalent lengths.
$\frac{1}{3} \mathrm{yd}=$ \qquad ft

18 in. $=$ \qquad yd
$50 \mathrm{~mm}=$ \qquad cm
$0.6 \mathrm{~m}=$ \qquad cm

Turns

Use your connected straws to show each turn.
Draw a picture of what you did.
Draw a curved arrow to show the direction of the turn.

Example

right $\frac{1}{4}$ turn (clockwise)	right $\frac{1}{2}$ turn (clockwise)	left $\frac{1}{4}$ turn (counterclockwise)	
3.			

Math Boxes 6.3

1. Circle the pair of lines that are parallel.

2. Write $<,>$, or $=$.
4×7 \qquad 5×6
7×5 \qquad 6×3
4×6 \qquad 5×5

$$
5 \times 7
$$

\qquad 4×9

2. Annette had $\$ 16.75$ in her purse. She spent $\$ 8.66$ at the store. How much money does she have left?
\qquad
4. Solve.

$$
\begin{aligned}
& 4,695+1,013= \\
& 5,692-3,688= \\
& \quad=10,000+695
\end{aligned}
$$

6. Rectangle $A B C D$ is $\mathrm{a}(\mathrm{n})$
\qquad by \qquad rectangle. The area of rectangle $A B C D$:
\qquad \times \qquad $=$ \qquad square units.

134 (one hundred thirty-four)

Triangle Explorations

Part 1

Follow these steps:

1. Mark three points on the circle.
2. Label them A, B, and C.
3. Use a straightedge to connect each pair of points with a line segment.
4. What figure have you drawn?

Part 2

Write all six 3-letter names that are possible for your triangle.
The first letter of each name is given below.
$A \quad A \quad B \quad B \quad C \quad C$

Part 3

Work with a group.
Make triangles with straws and twist-ties. Make at least one of each of the following kinds of triangles:

- all 3 sides the same length
- only 2 sides the same length
- no sides the same length
- 1 right angle
- 1 angle larger than a right angle
- all 3 angles smaller than a right angle

Part 4

Measure each side of the triangle you drew in Part 1 to the nearest $\frac{1}{4}$ inch.
side $A B$ \qquad in. side $B C$ \qquad in. side $C A$ \qquad in.

Math Boxes 6.4

1. Draw a ray, $\overrightarrow{A T}$. Draw a line segment, $\overline{B Y}$. Draw a line, $\overleftrightarrow{M E}$.

2. The turn of the angle is

0 less than a $\frac{1}{2}$ turn.
0 less than a $\frac{1}{4}$ turn.
0 greater than a $\frac{1}{2}$ turn.
0 a full turn.

5. Write the time in hours and minutes. half-past 6 \qquad :
quarter-past 9 \qquad : \qquad
quarter to 12 \qquad : \qquad

10 minutes to 10 \qquad :
2. In the number 34.972
the 9 means 0.9
the 7 means \qquad
the 3 means \qquad
the 4 means \qquad
the 2 means \qquad

4. Double these

Triple these numbers:
$6 \rightarrow$ \qquad $4 \rightarrow$ \qquad
$8 \rightarrow$ \qquad $6 \rightarrow$ \qquad
$12 \rightarrow$ \qquad $11 \rightarrow$ \qquad
6. What temperature is it? \qquad

Quadrangle Explorations

Part 1 Follow these steps:

1. Mark four points on the circle.
2. Label the points A, B, C, and D.
3. Use a straightedge to connect pairs of points to form a quadrangle.

Part 2 Write all eight 4-letter names that are possible for your quadrangle. The first letter of each name is given below.

A	A	B	B
C	C	D	D

Part 3 Work with a group.
Make quadrangles with straws and twist-ties. Make at least one of each of the following kinds of quadrangles:

- all 4 sides equal in length
- 2 pairs of equal-length sides, but opposite sides not equal length
- 2 pairs of equal-length opposite sides
- only 2 parallel opposite sides, each a different length
- only 1 pair of equal-length opposite sides

Part 4 Measure each side of the quadrangle you drew in Part 1 to the nearest $\frac{1}{4}$ inch.
side $A B$ \qquad in. side $B C$ \qquad in. side $C D$ \qquad in. side $D A$ \qquad in.

Estimate: The perimeter of my quadrangle is about \qquad inches.

Math Boxes 6.5

1. Circle the lines that intersect.

2. Write $<,>$, or $=$.

$$
10 \times 0 _429 \times 0
$$

7×6 \qquad 6×6
5×4 \qquad 4×5
1×18 \qquad 4×4

5. Complete the bar graph.

Lily ran
4 miles.
Meg ran
3 miles.
Rita ran 6 miles.

Median miles run:

2. Circle the right angle.

4. Measure each side of the triangle to the nearest centimeter.

Perimeter $=$ \qquad cm
6. Which is more?
1.36 or 1.6 \qquad
0.4 or 0.372 \qquad
0.69 or 0.6 \qquad
0.7 or 0.09

Polygon Explorations

Part 1 Follow these steps:

1. Mark 5 points on the circle.
2. Label the points A, B, C, D, and E.
3. Use a straightedge to connect pairs of points to form a polygon.
4. What kind of polygon is it? \qquad
5. Write 4 or more possible names for your polygon.

Part 2 Work with a group.
Make polygons with straws and twist-ties. Your teacher will tell you how many sides your polygons should have.

Make at least one of each of the following kinds of polygons:

- all sides equal in length, and all angles equal in size (the amount of turn between sides)
- all sides equal in length, but not all angles equal in size
- any polygon having the assigned number of sides

Polygon Explorations (cont.)

Part 3 A regular polygon is a polygon in which all the sides are equal and all the angles are equal.

Below, trace the smaller of each kind of regular polygon from your Pattern-Block Template.

Below, trace all the polygons from your Pattern-Block Template that are not regular polygons.

Part 4 Measure each side of the polygon you drew in Part 1

 to the nearest $\frac{1}{2}$ centimeter.side $A B$ \qquad cm
side $B C$ \qquad cm
side $C D$ \qquad cm
side $D E$ \qquad cm
side $E A$ \qquad cm

Estimate: The perimeter of my polygon is about \qquad cm.

Math Boxes 6.6

1. Draw a ray, $\overrightarrow{S O}$. Draw a line segment, $\overline{L A}$. Draw a line, $\overleftrightarrow{T I}$.

2. The turn of the angle is

0 greater than a $\frac{1}{4}$ turn.
0 less than a $\frac{1}{4}$ turn.
0 greater than a $\frac{1}{2}$ turn.
0 a full turn.
5. Draw a shape with 4 sides that are all equal in length.

6. Complete the Fact Triangle. Write the fact family.

Drawing Angles

Draw each angle as directed by your teacher. Record the direction of each turn with a curved arrow.

Part 1

A•
B•
C.

Part 2

Math Boxes 6.7

1. Label all the points of these intersecting lines. Name the 2 lines.

2. Fill in the unit box.

Then divide.
$25 \div 5=$ \qquad
$18 \div 3=$ \qquad
\qquad

$$
=30 \div 5
$$

$28 \div 7=$ \qquad

$$
=24 \div 4
$$

5. Measure each side of the triangle to the nearest centimeter.

Perimeter $=$ \qquad cm

4. Circle the right angle.

6. In the number 4.908
the 4 means
4 ones
the 0 means \qquad
the 9 means \qquad
the 8 means

Marking Angle Measures

Connect 2 straws with a twist-tie. Bend the twist-tie at the connection.
Place the straws on the circle.

- Place the bend on the center of the circle.
- Place both straws pointing to 0°.

Keep one straw pointing to 0°. Move the other straw to form angles.

Measuring Angles

Use your angle measurer to measure the angles on this page. Record your measurements in the table.

Angle	Measurement	
A	about $\quad \circ$	
B	about $\quad \circ$	
C	between $\quad \circ$	
D	about and $\quad \circ$	
E	about $\quad \circ$	
F	about $\quad \circ$	

Math Boxes 6.8

1. Draw a ray, $\overrightarrow{D O}$. Draw a line segment, $\overrightarrow{R E}$. Draw a line, $\overleftrightarrow{M I}$.

-
-
-
-

3. The turn of the angle is

0 greater than a $\frac{3}{4}$ turn.
0 less than a $\frac{1}{4}$ turn.
0 greater than a $\frac{1}{2}$ turn.
0 a full turn.
5. Draw a quadrangle with exactly one right angle.

2. Complete the equal-sharing story.

14 \qquad are shared equally
by \qquad girls.

How many \qquad does each
\qquad
\qquad
How many \qquad are
left over? \qquad
4. Double these Triple these numbers: numbers:
\qquad $10 \rightarrow$ \qquad
$80 \rightarrow$ \qquad $25 \rightarrow$ \qquad
$200 \rightarrow$ \qquad $300 \rightarrow$ \qquad
6. Complete the number-grid puzzle.

Symmetric Shapes

Each picture below shows one half of a letter. The dashed line is the line of symmetry. Guess what the letter is. Then draw the other half of the letter.
1.

2.

3.

4.

Draw the other half of each symmetric shape below.
5.

6.

7.

8.

9. The picture at the right shows one-fourth of a symmetric shape. There are two lines of symmetry. Draw the mirror image for each line of symmetry.

Challenge

10. There are 2 more lines of symmetry in Problem 9. Draw them.

Math Boxes 6.9

1. Draw a line segment, $\overline{D I}$, parallel to the line, $\overleftrightarrow{P O}$. Draw a ray, $\overrightarrow{\angle A}$, that intersects the line, $\overleftrightarrow{T W}$.

2. Fill in the unit box.

Then multiply.
$4 \times 5=$ \qquad
$7 \times 3=$
$=-\quad=4 \times 4$
\qquad

$$
=5 \times 3
$$

$工=7 \times 5$
5. Measure each side of the quadrangle to the nearest half-centimeter.

Another name for this quadrangle is a \qquad .

2. Describe a regular polygon.
\qquad
\qquad
\qquad
\qquad
\qquad
4. The degree measure of the angle is 0 more than 90°.

0 less than 90°.

0 more than 180°.
0120°.

6. Circle the right angle.

148 (one hundred forty-eight)

Math Boxes 6.10

1. These letters are Symmets:

$$
H, T, M, A
$$

This letters are not Symmets:

$$
F, \cup, R, S
$$

Write other letters that are Symmets:
\qquad
3. The turn of the angle is

0 a $\frac{1}{4}$ turn.
0 less than a $\frac{1}{4}$ turn.
0 less than a $\frac{1}{2}$ turn.
0 a full turn.

5. Draw a quadrangle with exactly one pair of parallel sides.

This shape is called a

2. Write the number that has

7 in the thousandths place
5 in the ones place
1 in the tenths place
3 in the hundredths place
\qquad . __ _ _ _

4. Read the graph. Days of Rain

Which month had the most days of rain?
\qquad

What is the median number of days of rain?

June July Aug Sept Oct Months

6. Draw a 4-by-8 array of Xs.

How many Xs in all?
Write a number model.
\qquad

Base-10 Block Decimal Designs

Materials $\quad \square$ base-10 blocks (cubes, longs, and flats)	
	\square crayons or colored pencils

Think of the flat as a unit, or ONE. Remind yourself of the answers to the following questions:

- How many cubes would you need to cover the whole flat?
- How much of the flat is covered by 1 cube? By 1 long?

Follow these steps:

Step 1 Make a design by putting some cubes on a flat.
Step 2 Copy your design in color onto one of the grids on journal page 151.

Step 3 How much of the flat is covered by the cubes in your design? To help you find out, exchange as many cubes as you can for longs.

Step 4 Figure out which decimal tells how much of the flat is covered by cubes. Write the decimal under the grid that has your design on it.

Example

Steps 1 and 2: Make a design on a flat with cubes. Copy the design onto a grid.

Step 3: Exchange cubes for longs. Figure out how much of the flat is covered.

Step 4: Write the decimal under the grid.
Make other designs with cubes on flats, and draw them on the grids. Write a decimal for each design.

Decimal: $\underline{0.24}$

10×10 Grids

Decimal: \qquad

Decimal: \qquad

Decimal:

\square		

Decimal: \qquad

Symmetry

If a shape can be folded in half so that the two halves match exactly, the shape is symmetric. We also say that the shape has symmetry.

The fold line is called the line of symmetry. Some symmetric shapes have just one line of symmetry. Others have more.

1 line of symmetry

2 lines of symmetry

3 lines of symmetry

1. Which of the following shapes is not symmetric? \qquad
a.

d.

b.

e.

c.

f.

2. Draw all the lines of symmetry on the shapes that are symmetric.

Math Boxes 6.11

1. If a map scale shows that $\frac{1}{2}$ inch represents 50 miles, then

1 inch represents \qquad miles

2 inches represents \qquad miles

4 inches represents \qquad miles
\qquad inches represents 500 miles

3. Fill in the unit box. Then divide.
$12 \div 3=$ \qquad

\qquad

$$
=25 \div 5
$$

\qquad

$$
=28 \div 4
$$

\qquad

$$
=21 \div 7
$$

$24 \div 4=$ \qquad
5. Measure the sides of the quadrangle to the nearest centimeter.

\qquad
Another name for this quadrangle is

2. Figure out this riddle:

I have four sides. My opposite sides are equal in length. One set of my sides is longer than the other set of my sides. What shape am I?
\qquad

4. The degree measure of the angle is

0 more than 90°.

0 less than 90°.
0 more than 180°.
040°.

6. Draw the lines of symmetry.

There are \qquad lines of symmetry.

Pattern-Block Prisms

Work in a group.

1. Each person chooses a different pattern-block shape.
2. Each person then stacks 3 or 4 of the shapes together. See below.
3. Each person makes a prism by using small pieces of tape to hold the blocks together.

4. Below, carefully trace around each face of your prism. Then trace around each face of 2 or 3 more prisms on a separate sheet of paper. Share prisms with other people in your group. Ask someone in your group for help if you need it.

Date

Time

Math Boxes 6.12

1. Name each 3-dimensional shape.

2. Give two reasons that this hexagon is not a regular hexagon.

\qquad
\qquad

3. What is a quadrangle?
\qquad
\qquad
\qquad
\qquad
\qquad

4. Draw a line, $\overleftrightarrow{A B}$, parallel to line segment $\overrightarrow{C D}$. Draw a ray, $\overrightarrow{E F}$, that intersects ray $\overrightarrow{G H}$.

5. The degree measure of the angle is

0 more than 120°.

0 less than 45°.

0 more than 180°.
090°.
6. Trace a figure from your template and draw the lines of symmetry.

The figure is a \qquad It has \qquad lines of symmetry.

Math Boxes 6.13

1. Solve.

$$
2 \times 2=
$$

\qquad
$5 \times 5=$ \qquad

$$
=3 \times 3
$$

$$
=4 \times 4
$$

3. Solve.

$$
\begin{aligned}
5 \times 4 & = \\
2 \times 7 & =- \\
& =3 \times 10 \\
- & =7 \times 10
\end{aligned}
$$

$$
3 \times 5=
$$

2. Circle the even numbers.

23,406	129
700,001	44,444
57	135,790

The numbers that are not circled are called \qquad numbers.

4. Continue the pattern.

6. Write the fact family.

Special Pages

The following pages will be used throughout the school year, first in this journal and then again in your Math Journal 2 later during the year.
Page
Sunrise and Sunset Record 158
Length of Day 159
National High/Low Temperature Project 160

On the Sunrise and Sunset Record on journal page 158, you will record the date, and then the time of sunrise and the time of sunset for that date. You will begin to do this at the end of Unit 1 and then once a week or so whenever your teacher tells you.

Then later in the year, you will use the data that you have recorded on journal page 158 to make a graph on journal page 159. Your teacher will teach you how to do this in Unit 5.

Finally, on the National High/Low Temperature Project on journal page 160, you will record the following data: the U.S. city with the highest temperature and the U.S. city with the lowest temperature for the same date. You will do this every week or whenever your teacher tells you.

When you begin your Math Journal 2 later in the school year, you will continue to record the sunrise and sunset times, and the highest and the lowest temperatures on pages in that journal. Near the end of the school year, you will use all this information.

Sunrise and Sunset Record

Date	Time of Sunrise	Time of Sunset	Length of Day	
			hr	min

Length of Day

Time

National High/Low Temperatures Project

Date	Highest Temperature		Lowest Temperature		Difference in Temperature
	Place	Temperature	Place	Temperature	
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$
		${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$

Paper Clock

1. Cut out the clock face, the minute hand, and the hour hand.
2. Punch a hole through the center of the clock face and through the Xs on the hands.
3. Fasten the hands to the clock face with a brad.

Name
Date
Time

Rulers

Cut out the rulers.
© 2001 Everyday Learning Corporation

(au!) səyวu|

Use with Lesson 3.2.

Use with Lesson 4.6.
Activity Sheet 3

Multiplication/Division Fact Triangles 2

[^0]: Use with Lesson 1.8.

